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Summary 

 
Regularization in the context of celestial mechanics or, more generally speaking, in the 

context of dynamical astronomy means introducing appropriate time and space variables 

such that the equations of motion of point masses (mostly under Newtonian forces) are 

regular in binary collisions. This allows insight into the behavior of orbits near 

collisions as well as efficient computation of collision and near-collision orbits and 

adequate treatment of binary stars in N-body simulations. In this chapter we begin with 

Levi-Civita’s (1920) regularization of the perturbed planar two-body problem, 

supplemented by an alternate approach to the theory of Kepler motion. We then proceed 

to the remarkable extension to three dimensions by Kustaanheimo-Stiefel (1964/1965), 

using an elegant quaternion formalism. By taking advantage of the Hamiltonian 

equations of motion, we finally describe global regularization of the spatial restricted 

three-body problem as well as of the general planar three-body problem.  

 

1. Introduction 

 

Modern dynamical astronomy is based on two fundamental discoveries of the 17th 

century: the discovery of the laws of planetary motion by Johannes Kepler in 1609 and 

1619, and the discovery of the laws of gravitation and the laws of motion under external 

forces by Isaac Newton in 1687. Clearly, Newton must have been inspired by Kepler’s 

laws; on the other hand, Kepler’s laws turn out to be a mathematical consequence of 

Newton’s equations of motion. 
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Newton’s basic laws are formulated by using the abstract notion of the point mass, an 

ideal particle of positive mass 0m   having infinitely small physical size. Although the 

motion of bodies of finite size is a highly relevant issue in aerospace engineering and in 

collisional stellar dynamics (see, e.g.  The gravitational two-body problem), a large part 

of dynamical astronomy deals with the motion of point masses. In this chapter the 

central issues are collisions of point masses, i.e. events where two point masses 

approach to arbitrarily small distance: the motion at the instance of collision will have a 

singularity. We will discuss methods of removing singularities from the equations of 

motion by introducing new coordinates. This procedure is called regularization. 

 

Beginning with the fundamentals, we state Newton’s well-known law of gravitation 

which expresses the force f  exerted by the point mass 1m  onto 2m  as a vector of 

magnitude  

 

1 2

2

m m

r
f        (1) 

 

pointing from 2m  to 1m , where   is the universal constant of gravitation and r  is the 

distance between the two point masses. Throughout the symbol jm  will denote the mass 

of the j th body as well as the body itself. We will follow the customary notation of 

celestial mechanics: instead of the masses jm  the gravitational parameters j jm   

will appear in the equations. The occasional use of the symbol jm  for the gravitational 

parameter corresponds to using physical units that imply 1  , e.g. the mass of the 

central body of a reference two-body problem (e.g. the Earth) as the unit mass, the 

radius of the circular reference orbit of a massless particle (e.g. a small satellite) as the 

unit length, and the time of revolution of the satellite, divided by 2 , as the time unit.  

 

To get an idea about possible behaviors at collision, we consider the 1-dimensional 

motion of a massless particle under the influence of the point mass m  situated at the 

origin. The distance  r t  of the particle from the origin, as a function of time t , 

satisfies the Newtonian differential equation  
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which admits a solution of the form r ct . The exponent   must have the value 
2
3

  , and the constant c  is uniquely determined; Eq. (2) has the solution  
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This motion is referred to as 1-dimensional (or rectilinear) parabolic Kepler motion. 

 r t  exists for every t ; r  tends to   for t  , and the collision singularity at 
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0t   is of the algebraic type  2 3r O t . 

 

 
 

Figure 1. The distance r  as a function of time t  in rectilinear parabolic Kepler motion, 

Eq. (3) with 1m .  

 

Figure 1 visualizes that this solution has a natural continuation from the past history 

0t   of the collision to the future 0t   through the singularity. The continuation 

corresponds to the analytic continuation of  r t  onto a different sheet of the Riemann 

surface of the corresponding analytic function. The singularity at 0t   is an algebraic 

branch point of order 3. 

 

In fact, a well developed theory of regularization in celestial mechanics has been around 

for almost a century. Whereas the beginnings may be attributed to Sundman (1907), the 

main ideas were contributed by Levi-Civita (1920). The notion Levi-Civita 

regularization is now used for the regularization of the binary collisions in the planar 

(2-dimensional) Kepler problem. The generalization to 3 dimensions was done by 

Kustaanheimo (1964) and Kustaanheimo-Stiefel (1965), their transformation often 

being abbreviated as KS regularization. 

 

These regularization theories use a set of transformed variables such that the 

singularities due to binary collisions disappear from the motion as well as from the 

differential equations defining the motion. An important consequence of this property is 

the continuous dependence of the entire orbit upon initial conditions, even in the 

presence of binary collisions. An additional and important benefit of Levi-Civita’s 

approach is that the regularized equations of motion of the unperturbed Kepler problem 

(e.g. the regularized version of Eq. (2)), are linear. This allows the development of 

simple perturbation theories. 

 

In the following section we develop and summarize the principal aspects of Levi-Civita 

regularization. In Section 3 a theory of Kepler motion based on this regularization is 

proposed, whereas Section 4 presents the extension to three dimensions by means of 
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quaternions. In Section 5 the Hamiltonian formalism in complex notation will be 

reviewed; then simultaneous regularization of several types of binary collisions by a 

single transformation will be discussed for two particular cases of the three-body 

problem. The final Section 6 will give an outlook to collisions of more than two bodies 

and to a few other topics not covered in detail here. 

 

2. Levi-Civita Regularization 

 

The fundamental object for discussing Levi-Civita regularization is the two-body 

problem or Kepler problem, i.e. the motion of a satellite of mass 2m  under the 

Newtonian force of a central body of mass 1m . By using relative coordinates with 

respect to 1m  there follows that the motion of 2m  with respect to 1m  is equivalent to the 

motion of a massless particle under the influence of a central body of mass 1 2m m m  . 

Since the motion takes place in a fixed plane we will use a two-dimensional coordinate 

system with the central body m  at the origin. 

 

Let  
T 2

1 2,x x x  be the position vector of the satellite with respect to the central 

body. For our purposes it will often be convenient to use complex notation 

1 2 1 2,x ix x ix    x x . In Sections 2 and 3 , bold face characters denote 2-vectors 

in complex notation, i.e., complex numbers. The bar means conjugation. The basic 

equation of motion is 

 

   1 23
, , ,t m m r

r
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x
x f x x ,       (4) 

 

where r  is the distance between the two bodies. For later use we have already 

introduced a perturbative force vector  ,tf x ; the pure Kepler motion is obtained with 

f 0 . 

 

The corresponding energy equation is obtained by integrating the dot product ,  of the 

vector x  with  Eq. (4) (in vector version) with respect to t : 
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where h  is the negative energy satisfying the differential equation and initial condition  
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The sign of h  has been chosen such that 0h   corresponds to elliptic motion in the 

unperturbed Kepler problem. 

 

The Levi-Civita regularization procedure will be carried out in three steps. The first step 
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is the introduction of a new independent variable called fictitious time suggested by 

Sundman. The second step is the conformal squaring in the physical plane, which 

suggests using complex notation. In the final step the energy equation – also written in 

terms of the new variables – is used to eliminate the first derivatives. The formal 

calculations for determining the regularized equations of motion are very simple; they 

will be described in detail in the following three short subsections. 

 

2.1. Time Transformation: Slow-Motion Movie 

 

The first regularization step calls for introducing a fictitious time   according to the 

Sundman transformation  
 

, ( ) ( ) .
d

dt r d
d




          (7) 

 

Therefore, the ratio dt d  of the two infinitesimal increments is made proportional to 

the distance r ; the movie is run in slow-motion whenever r  is small. Eqs. (4), (5) are 

transformed into  
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2.2. Conformal Squaring 

 

The second step of Levi-Civita’s regularization procedure consists of representing the 

complex physical coordinate x  as the square 2u  of a complex variable 

1 2u iu  u , 

 
2x u ,     (9) 

 

i.e., the mapping from the parametric plane to the physical plane is chosen as a 

conformal squaring. As a consequence, the parametric u -manifold is a Riemann surface 

with two sheets, connected by branch points at u 0  and at u . Eq. (9) implies  

 
2

,r   x u uu    (10) 

 

and differentiation of Eqs.  (9) and (10) with respect to   yields  

 

 22 , 2 , r            x uu x uu u u u uu    (11) 

 

By substituting this into (8) we obtain  

 

 2 22 32 2 , 2r r r h       uu u u f u    (12) 

 

where in the first expression the two terms 
22 2 r   u u u uu  have cancelled out, and 
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the second equation has been multiplied by r . 

 

Inverse map. Obtaining initial values    0 0u x  or    0 0 u x  requires the 

computation of a complex square root. This can conveniently be accomplished by 

means of the formula  

 

 
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

x x
x

x x
   (13) 

 

which reflects the observation that the complex vector x  has the direction of the 

bisector between x  and the real vector x , and is therefore a vector proportional to 

x x . Equation (13) holds in the range  arg   x  and represents the principal 

branch of the complex square root. The alternate formula  
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holds in  0 arg 2 x  and agrees with (13) in the upper half-plane.  

 

2.3. Elimination of First Derivatives 

The third step of Levi-Civita regularization produces linear differential equations for the 

unperturbed problem f 0  by replacing the parenthesis of Eq. (121) with rh  from the 

energy relation (122) , and dividing by r u , using (10). The result is  

 

Theorem 1: The perturbed Kepler problem (4) with the energy equation (5) is 

equivalent with 

 

 2 ,h r   u u f x t u  where 
2 , r  x u uu   
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a system of differential equations for the dependent variables ,u  t , h  as 

functions of fictitious time  . 

 

Regularization has been accomplished: all collisions, i.e. all passages of u  through 0, 

do not cause singularities in the solution as long as the perturbation is regular. The 

following cases are of particular interest:  
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1.  0 0 const.f h h    Equation (14) describes a harmonic (linear) oscillator in 

two dimensions, corresponding to unperturbed Kepler motion.  

2. f  has a potential  V x ,        grad 0 0f V h x h V x V      . Equation (14) 

describes a perturbed harmonic oscillator with varying frequency. 

3.        , 0 0f O h x h O       . Equation (14) describes a perturbed 

harmonic oscillator with slowly varying frequency. 

 

The linear structure of the unperturbed version f 0  of Eq. (14) is a most welcome 

property for developing a simple theory of small perturbations. The basis is the explicit 

solution of the unperturbed problem, i.e. the linear harmonic oscillator (14)1 with 4 

integration constants, referred to as orbital elements. Owing to the linearity the 

perturbations of every order are determined by linear differential equations with only 

the inhomogeneity changing. For details see, e.g., Stiefel-Scheifele (1971), Waldvogel 

(2006). In contrast, classical perturbation theories based on the nonlinear equation (4) 

(see, Classical Hamiltonian Perturbation Theory) lead to more complicated equations 

for the higher-order perturbations.  

 

- 

- 

- 
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