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Summary 
 
Plants are sessile organisms that respond to environmental stimuli such as light, 
temperature, gravity, ions, draught, wounding and infections by viruses and fungi. 
Plants respond to daily changes of sunlight, recognizing the length of duration of day 
and night. Plants determine the transition from vegetative growth to flowering under the 
control of day length, (although length of dark period (night) is critically important). 
Under nitrogen-limited conditions Neurospora crassa enters a sexual cycle from 
mycelia (vegetative growth) to protoperithecium formation. These processes are under 
the control of light.  
 
In Arabidopsis thaliana light signals are perceived by several photoreceptors including 
phytochrome A, B, C, D and E, cryptochrome 1 (CRY1) and 2 (CRY2), phototropin 1 
(Phot1) and 2 (Phot2), and zeaxanthin. The candidates of signal transducer of light 
immediately downstream of phytochrome are nucleoside diphosphate kinase, NDK, as 
well as PIF3 (phytochrome interacting factor 3). The downstream of Phot1 is followed 
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by NPH 2 (non phototropic hypocotyl 2), NPH3 and NPH4. Phot1 forms a complex 
with NPH3. 
 
In Neurospora crassa putative photoreceptors are WC-1 and WC-2 proteins. The former 
includes LOV (light, oxygen and voltage) domain, and the latter has PAS domain with 
putative binding domain of chromophore (cumaric acid) of photoactive yellow protein 
(PYP), although there is no strict evidence that WC-1 and WC-2 are photoreceptors. 
Both proteins are also suggested to function as transcription factors. 
 
From in vitro analysis the nucleoside diphosphate kinase (NDK-1) was rapidly 
phosphorylated in response to blue light irradiation of the reaction mixture. 
NDK-1Pro72His protein from a mutant ndk-1Pro72His showed neither autophosphorylation 
nor protein kinase (phosphate transferring) activity. ndk-1Pro72His lacked to cause light 
induced polarity of perithecia. Purified NDK-1 showed: i) nucleoside diphosphate 
kinase activity of ATP+GDP� ADP+GTP, ii) autophosphorylation activity, and iii) 
protein kinase (phosphate transferring) activity to phosphorylate myelin basic protein. 
The ndk-1Pro72His mutant lacked the latter two activities. By the nucleoside diphosphate 
kinase activity of i) activity, NDK-1 is suggested to provide GTP in the vicinity of 
GTP-binding protein. A new signal transduction pathway designated as NDK cascade 
via the activities of ii) and iii) are suggested. New opsin-1 (NOP-1) bound retinal and 
generated proton by light illumination. The nop-1 mutant showed deficiencies in the 
light induced expression of nop-1 transcript, and also deficiencies in the light induced 
production of aerial hyphae and conidium. In Neurospora crassa circadian rhythm of 
conidium formation are well known. By use of band (bd) strain several mutants in 
circadian rhythm including frq mutants were isolated and analyzed. 

1. Introduction 

Plants and fungi are sessile organisms which are exposed to severe changes in 
environmental circumstances such as daily changes of sunlight, temperature, gravity, 
nutritional ions, draught, wounding, waving by wind, and infections by viruses, bacteria 
and fungi. Those organisms have developed elaborate genetic systems to respond to 
these environmental stimuli. 
 
In complete darkness seeds of the pea (Pisum sativum) geminate if they have enough 
moisture (water) and appropriate temperature, elongating long white stems. The leaves 
have not expanded, and are white or yellow because of the lack of chlorophyll. This 
type of morphogenesis is designated as scotomorphogenesis, and is shown in Figure 1. 
Seeds that are relatively large in size show this pattern of germination, enabling the 
shoot to ‘search’ for light in deep places in the soil. Seeds, such as those of Arabidopsis 
thaliana and of lettuce (Lactuca sativa), which are small in size usually have the ability 
to geminate under light, in addition to the appropriate conditions of moisture and 
temperature. This pattern of control of seed germination is derived from natural 
selection, since small seeds do not have enough nutritional resource to permit a search 
for light in deep soil. As shown in Figure 1, peas show completely different 
morphogenesis under light―a phenomenon called photomorphogenesis. 
 
The process of photomorphogenesis includes following steps in the development: 1) 
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Regulation of a current of ions such as Ca2+, and K+ via membrane systems such as 
plasma membrane. 2) Regulation of stomatal opening. 3) Regulation of chloroplast 
relocation. 4) Regulation of gene expression including the expression of chalachone 
synthetase (CHS), etc. 5) Phase shift of the expression of catalase gene, which shows 
clear circadian rhythm. 6) Developmental regulation of chloroplast formation from 
proplastid. 7) Regulation of seed germination. 8) Suppression of elongation of stem 
hypocotyls and epicotyls. 9) Positive phototropism of stem elongation. 10) Transition 
from vegetative growth to flowering. These processes are precisely under the control of 
gene regulation. 

 
 

Figure 1. Pea seedlings grown (A) in the light and (B) in complete darkness (etiolated) 
 
In the case of filamentous fungus, Neurospora crassa similar light (blue light) regulated 
morphogenesis can be observed. The life cycle of Neurospora crassa is shown in Figure 
2. During several processes in the life cycle light has an indispensable role. The major 
processes controlled by blue light are as follows. 1) Input resistance caused by light in 
the mycelia indicating light-controlled changes in the current of ions via the plasma 
membrane. 2) Light-induced accumulation of carotenoids in the mycelia. 3) 
Light-induced formation of aerial hypha and conida. 4) Under nitrogen-limited 
conditions blue light induced the formation of protoperithecium. 5) Light-induced 
perithecial polarity forming a perithecial beak (including the ostiole, a hole through 
which ascospores shoot out) pointing upward. In darkness it forms at random places on 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

GENETICS AND MOLECULAR BIOLOGY - Heredity and Environment; Light Signal Transduction in Plants and Fungi - Kohji 
Hasunuma and Naoto Yabe 
 

©Encyclopedia of Life Support Systems (EOLSS) 

the perithecia. 6) Positive phototropism of perithecial beak. 7) Light can induce phase 
shift of circadian rhythm of conidium formation produced by band strain. 8) 
Suppression of circadian production of conidia to constant formation of conidia by 
strong light. 
 
These processes are precisely controlled by the genetical systems. The description will 
be focused on the results of research using Arabidopsis thaliana and Neurospora crassa. 
 

 
 

Figure 2. Life cycle of Neurospora. The asexual cycle, the inner sequence, depicts the 
formation of macroconidia from aerial hyphae and their germination to form a new 

mycelium. Microconidial formation is not shown here. The outer sequence depicts the 
sexual cycle, originating with a protoperithecium, its fertilization via its trichogyne by a 
conidium of the opposite mating type, and later events that culminate in the formation 

of asci, containing ascospores. On the light, nuclear fusion and meiosis are shown in an 
individual ascus as it develops. 

2. Historical aspects of analysis of response to light 

The effects of sunlight on the development of plants had been described in the 
nineteenth century (Henfrey 1852; Kjellman 1885), although Garner and Alland (1920) 
initiated a period of further rapid development of the research. Flowering response 
induced by long nights, in the case of short-day plants, could be prevented by the 
interruption of the dark period by a short pulse of light, called a ‘night break’. Parker 
and Hendricks (1946) reported that red light was most efficient as a night break, and the 
effect of red light could be cancelled in some case by a subsequent illumination by 
far-red light. 
 
The very small seeds of some plant species that can lie for a long period in the soil, can 
be activated by light, and most efficiently by red light (Flint and McAlister. 1937; 
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Borthwick et al. 1952). Whithrow et al. (1957) determined the action spectra for both 
the red light effect and the reversal effect by using the straightening of the plumular 
hook of etiolated bean plants by quantification of the efficiency of different wavelengths 
of light. Borthwick et al (1952) and Shropshire Jr. et al (1961) determined the action 
spectra for seed germination, and for photoperiodic induction of flowering (Borthwick 
et al 1948), leading to the discovery of photomorphogenic pigment to phytochrome. 
Borthwick et al (1952) suggested that the chromophore of phytochrome was an open 
chain tetrapyrrole. The action spectrum of a red/far red response in the induction and 
reversed reaction of hook opening in bean, and the absorption spectrum of purified oat 
phytochrome are presented in Figure 3. 
 

 
 

Figure 3. Action spectra for UV-A, UV-B and red/far red response and absorption 
spectra of purified oat phytochrome. A Action spectra for: a UV-B response 

(anthocyanin synthesis in Sorghum), a UV-A/blue response (phototropism in oat), and a 
red/far red response (induction of an reversal of hook opening in bean). B Absorption 

spectra of purified oat phytochrome in the red-absorbing Pr form and the far 
red-absorbing Pfr form. (Vierstra and Quail 1983) 

- 
- 
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