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1. Introduction 
 
Since the 1960s, the theory of financial markets has become a growing field of interest 
for academics as well as for practitioners. We present here an overview of the main 
topics. 
 
The key concept of the theory is that of “absence of arbitrage”. An arbitrage is a way of 
making money with no initial investment. A minimal requirement of the theory of 
financial markets is that there should be no-arbitrage. We shall see the use and the limits 
of the concept in several fields as applied in pricing of derivatives, in consumption-
investment problems and lastly to study the term structure. 
 
The survey is organized as follows: In the first section, we focus on the problem of 
pricing and hedging derivatives. Indeed since the opening of the Chicago board of 
option exchange in 1973 and the use of Black and Scholes’ formula, this topic has 
probably become the most important in finance given the large variety of financial 
instruments that have been created. In the second section, we consider next 
consumption-investment problems, which were studied at a very early stage in the 
literature. A third section is devoted to financial markets equilibria, in other words to the 
study of the relations between asset prices and macroeconomics variables. A concise 
survey of recently developed models for short-term interest rate and zero-coupon 
dynamics is given in the last section. 
 
In each of the sections, we present discrete time and continuous time models. We end 
this survey with a bibliography of recent books which deal with the subject. 
 
2. Pricing and Hedging 
 
Assume that a family of underlying assets is given on a time horizon 0 T[ , ] . We shall 
first focus on the problem of pricing and hedging derivative products. A derivative 
security is a security whose value depends on the value of the basic underlying 
variables. The “price” of the derivative is the amount of money that the buyer agrees to 
give to the seller of the derivative at time 0 to receive the derivative at date T (the 
maturity time). When the derivative product is redundant in the market, we shall see that 
it has a unique fair price, that of a portfolio of underlying assets which gives the same 
cash flow. Otherwise any investor could achieve a return with no initial investment. 
When it is not redundant, it may be given several prices.  The “hedging strategy” is the 
portfolio of underlying assets needed by the seller of the derivative to hedge himself 
against the delivery of the product. 
 
2.1. Discrete Time 
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2.1.1. Binomial Approach 
 
The simplest example is the so-called two dates “binomial model”'. There are two 
trading dates, 0 and 1, and two assets : a bond, with price 1 at time 0 and 1 r  ( )+ at time 
1 ( r is the interest rate for the period). The asset price equals S at time 0 and is a random 
variable 1S at date 1, equal to uS with probability p and to dS with probability1 p- , 
with d u< . In this simple model, a derivative product is any financial product with 
payoff 1C at date 1 equal to 1h S( ) for some function h . Examples of derivative products 
are “call options” and “put options”. A call option of strike K has payoff 1 1C S K( - )+=  
(while a put option of strike K  has payoff 1 1P K S( - )+= ) . Indeed one unit of a call 
option (bought at date 0) confers to the buyer the right (but not the obligation) to buy 
the asset at price K  at date 1. At date 1, if 1S K> , the buyer of the call buys the asset at 
price K  and sells it right away at price 1S  making profit 1S K- while if 1S K< , the buyer 
doesn't do anything and his profit is 0. The seller has to deliver the asset at price K  
if 1S K> , this is why he needs to hedge himself against this potential loss. 
 
Let ( ),α θ be a portfolio of α  shares of bond and θ  shares of asset. There are no 
constraints on α  and θ , these numbers can be negative. If θ  is negative, the investor is 
“short” in the asset. The portfolio hedges the derivative if it has same value at time 1, 
hence if 1 11 r S h S( ) ( )α θ+ + = equivalently if the following two equations are fulfilled 
 

( ) ( )
( ) ( )

u

d

C h uS 1 r uS

C h dS 1 r dS

:

: .

α θ

α θ

= = + +⎧⎪
⎨

= = + +⎪⎩
 

 
The hedging portfolio is given by 
 

( )
d u u duC dC C C1

1 r u d S u d
- -

, ,
- -

α θ= =
+

 

 
and the time-0 value of the hedging portfolio can be written as 
 

( )( )u d
1C S C 1 C

1 r
: - ,α θ π π= + = +

+
 (1) 

 
where 
 

( )( )1 1 r d
u d

: .π = + −
−

 (2) 

 
The right member of (1) can be interpreted as an expectation if π  belongs to [0, 1], 
which is verified if d 1 r u< + <  The number π  is then called the “risk neutral 
probability” since 
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( )uS 1 bS
S

1 r
,

π π+ −
=

+
 (3) 

 
in other words, the value of the asset is equal to the expectation of its discounted payoff. 
Equality (1) proves that the value of any portfolio is equal to the expectation of its 
discounted payoff. If the inequality d 1 r u< + <  is not fulfilled, then there are ways to 
make money with no initial investment. More precisely, an arbitrage opportunity is a 
portfolio ( , )α θ such that the initial value is nonpositive S 0α θ+ ≤  and the date 1 value is 
nonnegative 
 
( ) ( )1 r uS 0 1 r dS 0,α θ α θ+ + ≥ + + ≥  

 
and at least one of the three inequalities is strict. For example, let us show that if 

1 r d( )+ < , then there is an arbitrage. Indeed, at date 0, an investor may borrow the 
amount of money S at interest rate r and with the money, buy the asset. At date 1, he 
reimburses S 1 r( )+ and sells the asset at price 1S dS≥ making the nonnegative net profit 

1S S 1 r- ( )+ in both states and a strictly positive profit in the up state. Hence the portfolio 
S 1  (- , ) is an arbitrage. Symmetrically, in the case u 1 r( )< + , the portfolio S 1( ,- ) is an 

arbitrage (the investor shorts the asset). Hence if there is no-arbitrage, d 1 r u< + <  and 
the price of the asset is its expected discounted payoff under the risk neutral probability. 
Similarly the value of any portfolio is its discounted expected payoff under the risk 
neutral probability. It can be proved that if the price of the derivative was different from 
C, as defined in (1), then there would exist arbitrage opportunities. 
 
2.1.2. Two Dates, Several Assets and Several States of the World 
 
We now consider a two dates financial market where uncertainty is represented by a 
finite set of states 1 k{ , , }… . There are d 1+ assets. At date 0, asset i  0 i d, ≤ ≤ , has value 

iS and pays id j( ) at date 1, in units of accounts, in state j . Let i kd ∈\  be asset's i payoff 
vector. Assume that asset 0 is riskless (in other words that 0d j 1 j( ) ,= ∀ ) and let interest 

rate r be defined by 0 1S A
1 r

= ⋅
+

 portfolio ( )0 1 d, ,...,θ θ θ=θ  where iθ ∈ R  is the fraction 

of asset i  held by an investor, has market value 
d

i i

i 0
S S 0θ θ•

=

= =∑  at date 0 

payoff ( )
d

i i

i 0
d jθ

=
∑   at date 1 in state j . Let d 1+∈S \  be the date 0 assets market values 

vector and D be the k d 1( ( ))× + matrix of payoffs. There is no-arbitrage if 0θ =D  implies 
S • θ = 0 and Dθ ≥ 0, Dθ ≠ 0 implies S • θ > 0. In other words, there is no-arbitrage if 
there is no portfolio offering something for nothing. It follows from a convex analysis 
type of argument that there is no-arbitrage if there exists a “state price” vector kβ ++ℜ∈  
such that  
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( ) { }
k

i i
j

j 1
S d j i 0 d,..., .β

=

=∑ ∈  

 

One can think of jβ  as the cost of obtaining one unit of account is state j. As 
 

k
0

j
j 1

1S
1 r

β
=

= =
+ ∑ , define ( )j j1 rπ β= + . Then 

k

j
j 1

1π
=

=∑ . We now have a vector of 

probabilities (such a probability is called “risk neutral”) and can write 
 

( ) { }
k

i i
j

j 1

1S d j i 0 d
1 r

,..., .π
=

= =
+ ∑ ∈  

 
Hence if there is no-arbitrage, the price of an asset is its expected discounted payoff 
under a well chosen probability. 
 
A contingent claim is a date 1 random payoff and is identified to a element of kR . 
Markets are complete if span kD = ℜ . In other words, any contingent claim kz ℜ�∈  may 
then be hedged (for any kz ℜ�∈ , there exists a portfolio θ such that z = Dθ). If follows 
from elementary algebra that β and (π, r) are uniquely defined. The date 0 value of a 
contingent claim z is the initial value of any hedging portfolio θ and is equal to 
 

k k

j j j j
j 1 j 1

1S z z
1 r

θ π β•

= =

= =
+ ∑ ∑  

 
its payoff value at state price β or to its expected payoff under the risk neutral 
probability. One easily shows that this is the only fair price of the contingent claim: if 
the contingent claim was given any other price, then there would exist an arbitrage. 
If markets are incomplete, one can similarly price any contingent claim z in span D by 
the value of any hedging portfolio. If z ∉ span D, one cannot price z by arbitrage, one 
can only define a “bid-ask” spread. Let 
 
( ) { }S z S D z: inf θ θ•= ≥  

 
be the minimum expenditure of the seller of the contingent claim and 
 
( ) { }S z S D z: sup θ θ•= ≤  

 
be the maximal amount of money that the buyer of z can borrow against z. Any price in 

( ) ( )S z S z,⎡ ⎤⎣ ⎦  is a no-arbitrage price. Furthermore 
 

( )
T Tz DS z 0 S

1 r 1 r
sup ,π π⎧ ⎫⎪ ⎪= =⎨ ⎬

+ +⎪ ⎪⎩ ⎭
�  and ( )

T Tz DS z 0 S
1 r 1 r

inf ,π ππ
⎧ ⎫⎪ ⎪= =⎨ ⎬

+ +⎪ ⎪⎩ ⎭
� . 
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Similarly if there are portfolio constraints or transactions costs, one may only define a 
“bid-ask” spread. For example, assume that investors bear the constraints 

00 0 d,θ ≥ ≤ ≤A A . Then the definition of no-arbitrage has to be changed: there is no-
arbitrage in the market if there is no feasible portfolio that gives something for nothing 
(in other words, there is no-arbitrage if 00 0 d,θ ≥ ≤ ≤A A , Dθ ≥ 0, implies S • θ > 0). If 
one defines 
 
( ) { }0S z S 0 0 d D z: inf , ,θ θ θ•= ≥ ≤ ≤ ≥A A  and ( ) { }0S z S 0 0 d D z: sup , ,θ θ θ•= ≥ ≤ ≤ ≤A A , any 

price in ( ) ( )S z S z,⎡ ⎤⎣ ⎦  is a no-arbitrage price. 
 
2.1.3. Multiperiod Discrete Time Model 
 
Let us now study the case of N trading dates.  
 
Let us first assume that there are only two assets, a riskless and a risky asset. The 
riskless asset has price (1 + r)n at date n (we assume here that the interest rate is constant 
over time and denote by Rn = (1 + r)-n the time n discount factor) while the risky asset 
has price Sn. Let us assume that the investor observes past prices and make decisions 
that depend only on those observations. To model that assumption, we associate to the 
investor's information a tree. We shall consider that at time 1, there are two states u and 
d; state u in term is followed by states uu and ud at date 2, the state uu is followed by 
uuu and uud and so on. A state of nature at time n is a sequence of length n of digits u 
and d; if en is such a sequence, the following states of nature at time n + 1 are denoted 
by (en, u) and (en, d). Let Sn(en) be the value of the asset at time n in state en. A portfolio 
(αn(en), θn(en)) held at time n in state en, has value αn(en)(1 + r)n + θn(en)Sn(en) in that 
state and value αn(en)(1 + r)n+1 + θn(en)Sn+1(en, u) or αn(en)(1 + r)n+1 + θn(en)Sn+1(en, d) at 
date n + 1. At date n + 1, the investor may rebalance his portfolio under a "self-
financing" constraint: (αn+1, θn+1) has to fulfill at date n+1 in state en+1, 

( )( ) ( ) ( ) ( )( ) ( ) ( )n 1 n 1
n n n n n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1e 1 r e S e e 1 r e S e .α θ α θ+ +

+ + + + + + + ++ + = + +  
 
In other words, the value at date n + 1 of the portfolio bought at date n equals the value 
at date n + 1 of the portfolio bought at date n + 1. When the market is arbitrage free 
between succeeding states of nature, one may construct, as in (2), node by node a 
probability on the tree, such that the discounted asset price process is a martingale. 
More precisely, for any n and any en, we introduce two nonnegative numbers πn(en; u) 
and πn(en; d) such that πn(en; u) + πn(en; d) = 1 and (cf. (3)) 
 

( ) ( ) ( ) ( ) ( ) ( )n n n n n 1 n n n n 1 nS e 1 r e u S e u e d S e d; ; ; ; .π π+ ++ = +  
 
In an explicit form 
 

( ) ( ) ( ) ( )
( ) ( )

n n
n n

n n n

1 r S e S e d
e u

S e u S e d
,

;
, ,

π
+ −

=
−
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represents the risk-neutral probability between time n and n + 1 for the branch of the 
tree starting at the node en. The discounted value of any self-financing portfolio is then 
also a martingale. Furthermore, one may compute the time n value of a terminal payoff 
CN and a hedging strategy by a backward induction argument. Indeed, the N - 1 time 
value in state eN-1 of payoff CN is (cf. (1)). 
 

( ) ( ) ( )
N

N 1 N 1 N N 1 N 1 N N N 1 N
s

C e R e s C e s; ,π− − − − −= ∑  

 
where sN = u or d. Similarly the N-2 time value in state eN-2 of payoff CN-1 is  
 

( ) ( ) ( )

( ) ( ) ( )
N 1

N 1 N

N 2 N 2 N 2 N 1 N 2 N 2 N 1 N 1 N 2 N 1
s

N n 2 N 2 N 1 N 1 N 2 N 1 N N N 2 N 1 N
S S

C e R R e s C e s

R e s e s s C e s s
,

; ,

; , ; , ,

π

π π
−

−

− − − − − − − − − −

− − − − − − − −

=

=

∑

∑
 

 
where sN-1 = u or d and πN-1(eN-2, sN-1; sN) = πN-1(eN-1; sN) is the risk neutral probability 
at node (eN-2, sN-1) = eN-1 between time N − 1 and N. The time n-value of payoff CN in 
the state en = e is therefore obtained by induction 
 

( )
( ) ( ) ( )

n 1 n 2 N

N n N

n n 1 N 1 n 1 N 1 N N n 1 n 2 N
s s s

C e R R

e s e s s s C e s s s
, ,...,

; ... , ,..., ; , , ,...,π π

+ +

+ − + − + +

=

∑  

 
where si = u or d. The discounted value of time n-value of payoff CN is therefore the 
conditional expectation of the discounted terminal value, given the information up to 
time n, i.e., knowing which states of nature is realized. 
 
Let us now assume that uncertainty is represented by a finite set of states {1,..., k} at 
each date (for simplicity, we assume that the number of states is constant over time). A 
state of nature at time n is a sequence of length n of states at dates A  ≤ n; if en is such a 
sequence, then en+1 = (en, j), j ∈ {1,..., k}. We assume that there are d + 1 assets. At date 
n, the i-th asset has ex-dividend price i

nS  and pays dividend i
nd  (the cum-dividend price 

is i i
n nS d+ ). A portfolio (αn, θn) held at time n in state en, has value 

( )( ) ( ) ( )n
n n n n n ne 1 r e S eα θ •+ +  in that state at time n and value  

 
( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

n 1
n n n n n 1 n 1 n 1 n 1

d
n 1 ii i

n n n n n 1 n 1n 1 n i
i 1

e 1 r e S e d e

e 1 r e S e d e

α θ

α θ

•

•

+
+ + + +

+
+ ++ +

=

+ + +

= + + +∑
 

 
at date n + 1. We assume that strategies are “self-financing”: the portfolio ( )n 1 n 1,α θ+ +  at 
date n + 1 in state en+1 has to be such that. 
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( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

n 1
n n n n n 1 n 1 n 1 n 1

n 1
n 1 n 1 n 1 n 1 n 1 n 1

e 1 r e S e d e

e 1 r e S e

α θ

α θ

•

•

+
+ + + +

+
+ + + + + +

+ + +⎡ ⎤⎣ ⎦

= + +
 

 
When the market is arbitrage free between succeeding states of nature (in other words if 
there doesn't exist strategies such that for a pair (en, en+1), the following inequalities are 
satisfied ( )( ) ( )n

n n n ne 1 r e 0α θ+ + ≤  while 

( ) ( ) ( ) ( ) ( )n 1
n n n n n 1 n 1 n 1 n 1e 1 r e S e d e 0α θ+

+ + + ++ + + ≥⎡ ⎤⎣ ⎦  with a strict inequality for some 
state), one may construct node by node a probability Q on the tree, such that defining 
 

( ) ( )

i i
i in n
n nn n

S d
S d

1 r 1 r
,= =

+ +
��  

 

the discounted price and dividend processes the i-th asset and 
n

i i i
n n

1
G d S

=

= +∑ A
A

�� �  the 

discounted gain, one has 
 

i i
Q n n-1n 1G E G .−
⎡ ⎤= ⎢ ⎥⎣ ⎦

� � F  

 
The discounted gain process is therefore a martingale. 
 
 
- 
- 
- 
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