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Summary 
 
The management of renewable resources can be viewed as a dynamic allocation 
problem. How much of a resource should be harvested today and how much should be 
left for tomorrow? Models of resource management might partition time into discrete, 
uniform intervals (for example, years), or they may treat time as continuous. Resource 
growth might be deterministic or stochastic (where a random variable or process 
influences the evolution of the resource stock). This essay looks at the four types of 
renewable resource models that might result from discrete- or continuous-time coupled 
with deterministic or stochastic dynamics. After presenting four reasonably general 
models, six specific models, applied to fishery, forest, and groundwater resources, are 
presented. The Method of Lagrange Multipliers, the Maximum Principle, and Dynamic 
Programming are used to determine optimal allocation or the form of an optimal, 
adaptive policy. The four general models and the six specific models were designed to 
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give the reader all the necessary theory and methods to confidently approach the large 
and growing literature on the economics of renewable resources. In the process of 
working through these models, the reader should also gain an understanding of steady-
state equilibria in deterministic models and adaptive policies and stationary distributions 
in stochastic models, and how these concepts might relate to the often ill-defined term, 
“sustainable resource use.” The essay concludes with a discussion of some of the 
impediments to improved resource management, the information needed to estimate the 
parameters of renewable resource models, and the institutions that might be needed to 
improve the allocation of fishery, forest, and water resources. 
 
1. Introduction 
 
This essay will present some basic economic models of renewable resources. A 
renewable resource is one that exhibits significant growth or renewal over an economic 
horizon. Most plant and animal populations would be regarded as renewable resources. 
The water in a lake, stream, or underground aquifer, if replenished through a cycle of 
evaporation and precipitation, might also be regarded as a renewable resource. If, 
however, a resource has a very small rate of growth or renewal, it might be more 
appropriate, from an economic perspective, to regard it as a nonrenewable resource. For 
example, the remaining stands of old-growth coast redwood (Sequoia sempervirens), 
found in California, may be 1000 years old or older. While redwoods can be cultivated, 
the length of time to achieve old-growth status may be so long, relative to most 
economic planning horizons, that these majestic trees are best regarded as a 
nonrenewable resource. Similarly, some aquifers have such a small rate of recharge that 
they are more like an underground pool of oil, and thus more appropriately modeled as a 
nonrenewable resource. Because renewable resources exhibit a significant rate of 
growth or renewal they would seem good candidates for sustainable harvest. The 
definition of sustainability is problematic. This is particularly the case if we admit that 
the rate of growth or renewal for a resource fluctuates through time. Indeed, the process 
of evolution raises some fundamental questions about the feasibility of sustainable 
resource use. 
 
The remainder of this introductory section will present the components of the basic 
bioeconomic model. The subsection on resource dynamics will introduce the distinction 
between continuous- and discrete-time models as well as deterministic and stochastic 
models. The second subsection formulates general objectives for resource management 
within a deterministic and stochastic environment. The third subsection discusses 
sustainability and adaptive management. Section 2 will assemble the components from 
subsections 1.1 and 1.2 and present four bioeconomic models. 
 
Section 3 contains six models of fishery, forest, and groundwater resources. These 
models are special cases of the more general models of Section 2. These models give 
further insight into the basic problem of resource management. Section 4 concludes 
with a discussion of the practicality of these models and the impediments to improved 
resource management in the real world. 
 
1.1  Resource Dynamics 
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Resource economics is concerned with how natural resources are allocated over time. 
The stock of a renewable resource will change with net natural growth and harvest. The 
change in a resource stock might be modeled using a differential or difference equation. 
Let Xt denote the stock of a renewable resource at instant t and Xt+Δt the stock at instant 
t+Δt, where we initially assume Δt is some small but positive increment of time. 
Suppose over the interval Δt that the net natural rate of growth is given by the function 
F(Xt) and that the level of harvest is denoted by Yt ≥ 0. Assume that Xt, F(Xt) and Yt 
are all measured in the same units. (In the models of this essay we will assume that the 
mass or volume of a resource stock can be measured, for example metric tons of 
herring, cubic meters of wood, or gallons of water.) Then the rate of change in the 
resource, going from t to t+Δt, may be calculated according to 
 

t t t
t t

X X
F(X ) Y

t
+Δ −

= −
Δ

 (1) 

 
If time is continuous we can let 0tΔ →  and equation (1) becomes a differential 
equation that is often written as 
 

•
( )X F X Y= −  (2) 

 

where 
•
X  = dX/dt denotes the time rate of change in the resource and X and Y are the 

resource stock and level of harvest at instant t, respectively. Alternatively, if Δt = 1 
equation (1) becomes the first-order difference equation 
 

1 ( )t t t tX X F X Y+ − = −  (3) 

 
Equation (3) is often written in iterative form as 
 

1 ( ) ( , )t t t t t tX X F X Y G X Y+ = + − =  (4) 

 
If X0 and Y0 are known then X1 = G(X0,Y0). If Y1 is known then X2 = G(X1,Y1), and 
one could simulate the dynamics of the stock for a known or candidate harvest schedule, 
Yt, from the initial condition, X0. Modern spreadsheet software makes such simulations 
relatively easy to do. 
 
A stochastic or fluctuating environment may make growth, and thus the stock in period 
t+1, a random variable. Suppose zt+1 is a random variable, perhaps water temperature 
that influences the growth of a fish stock. The realized value for zt+1 can only be 
observed at the beginning of t+1. The value of Xt+1 is determined by 
 

1 1( , ; )t t t tX G X Y z+ +=  (5) 

 
Suppose in period t we can observe or accurately measure Xt. While Xt is observable, 
the consequences of Yt on Xt+1 cannot be known with certainty in period t, when a 
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decision on the level of Yt must be made. It is usually assumed that the random 
variables, zt+1, are independent and identically distributed (i.i.d.), being generated by the 
density function f(zt+1). 
 
Stochastic differential equations are also used in modeling the dynamics of natural 
resources. In such models the resource stock becomes an Itô variable with dynamics 
described by 
 

[ ( ) ] ( )dX F X Y dt X dzσ= − +  (6) 
 
The first term on the right-hand-side of (6) is called the mean or expected drift rate. It 
depends on the relative rates for net growth and harvest, as in the ordinary differential 
equation, (2). The term σ(X) > 0 is the standard deviation rate, and ( )dz t dtε=  is the 

increment of a Wiener process, where ε(t) is a standard normal random variable, 
ε(t)~N(0, 1). In Sections 2 and 3 of this essay we will consider dynamic optimization 
problems based on the above equations for deterministic and stochastic growth. The 
deterministic models are generally more tractable and might be solved using the Method 
of LaGrange Multipliers, the Calculus of Variations, or the Maximum Principle. 
Problems with stochastic growth [equations (5) and (6)] will typically employ Dynamic 
Programming to find an optimal harvest policy. 
 
1.2 Management Objectives 
 
A well-defined resource management problem needs a clear objective. There are many 
potential objectives. A reasonably general approach is to define πt = π(Xt,Yt) to be the 
net benefits at instant or period t from having a resource stock of size Xt and harvest at 
rate Yt. In continuous-time models, this objective is often written as π = π(X,Y), with 
the presumption that π, X, and Y are all measured at instant t. 
 
It is possible that net benefits might only depend on the rate of harvest, in which case π 
= π(Y). Dependence of net benefits on the resource stock can arise for at least two 
reasons. First, in a strictly commercial setting, the cost of harvesting Y at instant t may 
depend on the size of the stock at instant t. It is the case for many resources that the 
larger the stock, the lower the cost for any level of harvest. Second, for certain animals, 
most notably marine mammals, the stock may convey “non-consumption” benefits 
associated with wildlife observation. The larger the stock of, say, humpback whales, the 
more likely they will be seen by humans on a “whale-watch cruise.” For certain species, 
humans may derive an “existence value” simply knowing that the population still exists 
in the wild. Larger populations may mean the species is more secure, and existence 
benefits may be higher. 
 
Underlying π = π(X, Y) is the presumption that “economic man is the measure of all 
value.” Such a perspective does not prevent homo economicus from having 
environmental and conservation motives. To determine their importance, non-
consumptive benefits must be estimated, in a dollar metric, so that the value of a larger 
stock in the future can be compared with the increment in benefits that might be 
obtained from a larger harvest today. This cuts to the heart of resource management; the 
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need determine the “best” harvest schedule from many feasible schedules. Different 
harvest schedules will have different implications for resource dynamics and the future 
flow of net benefits. Calculating the present value of net benefits is one way to rank or 
evaluate alternative harvest schedules. In continuous time the present value, PV, of net 
benefits from a harvest schedule, Y, that induces the resource trajectory, X, over an 
infinite horizon is given by 
 

0

( , ) tPV X Y e dtδ
∞

−= π∫  (7) 

 

where te δ−  is the continuous-time discount factor and δ > 0 is the instantaneous rate of 
discount. A common objective in bioeconomics is to maximize the present value of net 
benefits with respect to the harvest schedule, Y, for ∞ > t ≥ 0. 
 
In discrete time, where the net benefits in period t are πt = π(Xt,Yt), the present value of 
net benefits is written as 
 

0
( , )t

t t
t

PV X Yρ
∞

=
= π∑  (8) 

 
where ρ = 1/(1 + δ) is the discrete-time discount factor and δ is now the periodic rate of 
discount.  
 
As in continuous time, a common objective is to maximize PV by choosing Yt ≥ 0 for t 
= 0, 1, 2, ... , ∞. When growth is stochastic the objective of resource management is 
often the maximization of expected present value. Dynamic programming is used to 
find a value function that gives the expected present value in period t from having a 
stock of size Xt, assuming that the resource is optimally harvested in the future. The 
value function, Vt(Xt) must satisfy a recursive equation, called the Bellman equation, 
which takes the form 
 

1 1( ) [ ( , ) { ( ( , ; ))}]t t t t t t t t tV X Max X Y E V G X Y zρ + += π +  (9) 

 
where Et{•} is the expectation operator in period t and the maximization of [•] is with 
respect to Yt. The value function, Vt(Xt) requires that Yt be chosen so as to maximize 
the sum of current net benefits, π(•), plus the discounted expected value of having a 
stock size of Xt+1 = G(Xt,Yt;zt+1) in period t+1. If Xt and Yt are continuous variables, if 
π(•), Vt+1(•) and G(•) are concave, differentiable functions, and if the expectation 
operation is well defined, then the maximal condition requires ∂[•]/∂Yt = 0, or 
 

1 1(•) { ( ( , ; ))} 0t t t t t t tY E V G X Y z Yρ + +∂π ∂ + ∂ ∂ =  (10) 

 
Equation (10) is a single equation in Xt and Yt and will imply the optimal feedback 
policy  
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* ( )t t tY Xφ=  (11) 

 
In many infinite-horizon problems the value function and optimal harvest policy are 

stationary, meaning that they don’t depend on time. In this case * ( )t tY Xφ=  and the 

maximized expected present value of having a stock of size Xt is 
 

1( ) ( , ( )) { ( ( , ( ); ))}t t t t t t tV X X X E V G X X zφ ρ φ += π +  (12) 

 
where substitution of the optimal feedback policy has accomplished the maximization 
required in expression (9) and the expectation operator will “integrate out” zt+1, leaving 
V(Xt). 
 
To summarize, given forms for π(Xt,Yt), G(Xt,Yt;zt+1), the probability density f(zt+1), 
and the discount factor ρ = 1/(1 + δ), dynamic programming is used in an attempt to 
find the value function, Vt(Xt) and the feedback or adaptive harvest policy, 

* ( )t t tY Xφ= , that will maximize the expected present value of net benefits. 

 
1.3 Sustainability and Adaptive Management 
 
The management of a renewable resource in a deterministic environment might result in 
a steady-state equilibrium where Xt = Xt+1 = X ≥ 0 and Yt = Yt+1 = Y ≥ 0. The steady-
state equilibrium, (X,Y), is also called a fixed point, since it is a point in X-Y space 
which will perpetuate itself. In the continuous- or discrete-time equations for resource 
dynamics [equations (2) and (3)] a steady state equilibrium must satisfy Y = F(X). In 
words, a steady state is characterized by harvest equaling net growth. This makes 
intuitive sense, since, when harvest equals net growth, stock is unchanging. The net 
growth function is often specified so that F(X) > 0 for 0 < k < X < K, with F´(X) > 0 for 
k ≤ X < Xmsy and F´(X) < 0 for Xmsy < X ≤ K, where Xmsy is the stock size where F(X) 
reaches a maximum and Ymsy = F(Xmsy) is the maximum sustainable yield. A net 
growth function with these attributes is the cubic function 
 
Y = F(X) = rX(X/k-1)(1-X/K) (13) 
 
shown in Figure 1, where r = 1, k = 0.25, K = 1, and it can be shown that Xmsy=0.717. 
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Figure 1. F(X) = rX(X/k - 1)(1 - X/K), r = 1, k = 0.25, K = 1 
 

For the net growth function in Figure 1, r > 0 is called the intrinsic growth rate, k > 0 is 
called the minimum viable population, and K > 0 is called the environmental carrying 
capacity. 
 
For k < X < K, any point on the net growth function, F(X), is a steady state, and 
therefore an equilibrium which can support a sustainable harvest Y = F(X) > 0. To 
identify a preferred steady state equilibrium will required the specification of an 
objective which can be used to rank the infinite number of combinations (X, Y) that 
would support a sustainable harvest. Depending on management objectives, the 
preferred steady state might be at a stock size greater than or less than Xmsy. 
 
In some deterministic models and almost all stochastic models, a sustainable harvest, 
where Yt = Y > 0, will not be desirable. For stochastic models, where the stock is an 
induced random variable, a constant harvest policy is not optimal. Intuitively, if the 
stock is being bounced around by stochastic environmental factors, you would wish to 
harvest it in an adaptive way, where it is optimal to harvest more of a resource in a year 
when growth was greater than expected, and less in a year when growth was less than 
expected. 
 
 
 
- 
- 
- 
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