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Summary 
 
This chapter describes selected aspects of the physical, chemical, and biological 
properties of the actinide elements, their typical compounds, and their ions in 
aqueous solutions. These 5f-block elements have many unique features, and a 
comparison with similar species of the lanthanide (4f-block) and actinide transition 
series provides valuable insights into the properties of both. Some comparative 
data are presented on the electronic configurations, oxidation states, oxidation-
reduction (redox) potentials, thermochemical data, crystal structures, and ionic 
radii of the actinide elements, as well as their environmental properties and 
toxicology. 
 
1. Introduction 
 
The actinide elements are the fifteen chemical elements with atomic numbers 89 
through 103, the first member of which is actinium and the last of which is lawrencium. 
The actinides are a transition series of elements that fill the 5f subshell. The actinide 
series is unique in several respects: 
 

 Most of the elements (those heavier than uranium) were first discovered by 
synthetic methods: bombardment of heavy atoms with neutrons in nuclear 
reactors, bombardment with other particles in accelerators, or as the result of 
nuclear detonations. 

 All actinide isotopes are radioactive, with a wide range of nuclear decay 
properties, especially that of spontaneous and induced nuclear fission. 

 They are all metals with very large radii, and exist in chemical compounds and 
in solution as cations with very large ionic radii. 

 The metals exhibit an unusual range of physical properties. Plutonium, with six 
allotropes, is the most unusual of all metals. 

 Many of the actinide elements have a large number of oxidation states. In this 
respect plutonium is unique, being able to exist in aqueous solution 
simultaneously in four oxidation states. 

 In metallic materials and in some other compounds with elements lighter than 
plutonium, the 5f orbitals are sufficiently diffuse that the electrons in these 
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orbitals are “itinerant” (delocalized, chemically bonding, often with unique 
magnetic moments and electrical conductivity). In metallic materials and in most 
compounds with elements heavier than plutonium the 5f electrons are 
“localized” (not contributing significantly to electrical conductivity or to 
chemical bonds). Materials with plutonium and adjacent elements can exhibit 
both itinerant and localized behavior, depending on conditions such as 
temperature and applied pressure. 

 Actinium (which has no 5f electrons in the metal, free atom, or in any of its ions) 
and the elements americium through lawrencium are similar in many respects to 
the lanthanide elements (the elements that fill the 4f electron subshell). The 
elements, thorium through neptunium, have some properties similar to those of 
the d transition elements. 

 Relativistic contributions to electronic properties and spin-orbit effects are 
important in the chemical properties of actinides. 

 
2. Sources of Actinide Elements 
 
2.1. Natural Sources 
 
The elements, actinium through plutonium, occur in nature. Only the elements thorium, 
protactinium, and uranium are present in amounts sufficient to warrant extraction from 
natural sources. Thorium and uranium are widely disseminated in the Earth's crust 
(~10000 and ~3000 μg/kg respectively), and, in the case of uranium, in significant 
concentrations in the oceans (3.3 μg/L). More importantly, thorium and uranium are 
found highly enriched in certain mineral formations, and are obtained by conventional 
mining operations. Extraction of thorium and uranium from their ores had been 
practiced for many years prior to the discovery of the transuranium elements, and an 
extensive technology exists for the extraction of thorium and uranium from many 
different types of ores. 
 
Hundreds of thousands of tons of uranium have been processed for isotopic separation. 
Five grades of isotopically separated uranium are commonly recognized: depleted 
uranium (less than 0.71% 235 U ), natural uranium (0.71% 235 U ), low-enriched uranium 
(0.71-20% 235 U ), highly enriched uranium (HEU) (20-90% 235 U ), and weapon-grade 
uranium (greater than 90% 235 U ). Of these grades, HEU and weapon-grade uranium are 
the most important. Highly enriched uranium (HEU) is produced from natural uranium 
for use in nuclear weapons and for use in commercial nuclear reactors. Worldwide, at 
the end of 1994, 450 metric tons of HEU (calculated as weapon-grade equivalent) was 
inside nuclear weapons and 1300 tons had been removed from weapons. An additional 
20 tons exist in civil inventories. This total (1770 tons) is slowly being decreased (20 
tons per year in 1996) by blending down of Russian HEU.  
 
Neptunium ( 237 Np and 239 Np ) and plutonium ( 239 Pu ) are present in extremely minute 
amounts in nature as a result of natural nuclear reactions with neutrons in uranium ores. 
The longer-lived 244 Pu  has been found in the rare-earth mineral bastnasite to the extent 
of 1 part in 1011. This may possibly be a primordial endowment. 
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Actinium and protactinium are decay products of the naturally occurring uranium 
isotope 235 U  and are present in uranium minerals in such low concentration that 
recovery from natural sources is a very difficult task. For their artificial production, see 
the next section. 
  
2.2. Artificial Production of Actinides 
 
It is relatively straightforward to obtain actinium, protactinium, and most of the 
remaining transuranium elements by neutron irradiation of elements of lower atomic 
number in nuclear reactors. Thus, actinium has been produced in multigram quantities 
by the transmutation of radium with neutrons produced in a high-flux nuclear reactor: 
 

γRanRa 227226 +→+  
 

-227227 βAcRa +→  
 
The product actinium can be separated from the precursor radium by solvent extraction 
or ion exchange, and gram amounts of actinium have been obtained by this procedure. 
This is not at all an easy task, considering the highly radioactive substances involved 
and the hazards of radon emission that accompanies these nuclear reactions, but it is 
preferable by far to extraction from natural sources. Protactinium can be produced by 
the nuclear reactions: 
 

γThnTh 231230 +→+  
 

-231231 βPaTh +→  
 
The amount of 231Pa that has been produced in this way, however, is much less than the 
amounts (more than 100 g) of protactinium that have been obtained from residues 
accumulated from the very large-scale extraction of uranium from ores. Because of the 
extreme tendency of protactinium(V) to form colloidal polymers that are easily 
adsorbed on solid surfaces, and cannot be removed from aqueous media by solvent 
extraction, the recovery of protactinium from uranium ore processing residues can only 
be described as a heroic enterprise. 
 
Neptunium-237 is a long-lived isotope of element 93 that is produced in kilogram 
amounts. It is formed as a by-product in nuclear reactors when neutrons produced in the 
fission of uranium-235 react with uranium-238:  
 

n2UnU 237238 +→+  
 

-237237 βNpU +→  
 
Neptunium-237 is also formed by neutron capture in uranium-235: 
 

γUnU 236235 +→+  
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γUnU 237236 +→+  

 
-237237 βNpU +→  

 
The waste solutions from the processing of irradiated uranium fuel usually contain the 
neptunium, which can be isolated and purified by a combination of solvent extraction, 
ion exchange, and precipitation techniques. 
 
The strategically important isotope 239 Pu is produced by the ton in nuclear reactors. 
Excess neutrons from the fission of uranium-235 are captured by uranium-238 to yield 
plutonium-239:  
 

PuNpUnU 239239239238 →→→+  
 
Neutrons also cause the uranium nuclei to fission: 
 

MeV 2002.5n productsfission nU235 ++→+  
 
After removal from the reactor, the irradiated fuel can be chemically separated to 
extract the plutonium and also to separate the highly radioactive fission products. 
 
Plutonium produced in nuclear reactors in which the fuel is irradiated for long periods 
of time contains plutonium isotopes with mass numbers up to 244, formed from 239 Pu  

by successive neutron capture. Three grades of plutonium are commonly recognized: 
weapon-grade plutonium (less than 7% 240 Pu ), fuel-grade plutonium (7-18% 240 Pu ), 
and reactor-grade plutonium (more than 18% 240 Pu ). 
 
Plutonium is an element that was until recently produced in “production” reactors, i.e. 
reactors that were dedicated to produce nuclear materials for military purposes. More 
than 260 metric tons of military plutonium have been produced and separated 
worldwide. Plutonium is also formed as a by-product of electricity production in all 
commercial (civilian) nuclear power reactors. As of 2000 the total “discharge” of 
plutonium (plutonium in and separated from civilian spent fuel) from commercial 
nuclear power reactors was estimated to be 1,380 metric tons, and this amount is 
predicted to increase by 741 metric tons in the decade 2001-2010. 
 
Although highly enriched uranium (HEU) and weapon-grade plutonium are primarily 
for military purposes and the lower grades are used in commercial nuclear reactors, 
enriched uranium and plutonium of all grades are commonly discussed together because 
235 U  and 239 Pu are the two primary fissile isotopes and because they have the greatest 
security risk of potential diversion from peaceful to military or terrorist uses. Therefore 
the total inventory must include both military and civilian stocks. 
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The nuclide 238 Pu is an important heat source for terrestrial and extraterrestrial 
applications. The heat is generated by its nuclear alpha-particle decay. This nuclide is 
available in kilogram quantities from the neutron irradiation of neptunium-237: 
 

PuNpnNp 238238237 →→+  
 
followed by chemical separation. Its 87.7-year half-life makes it the best nuclide 
for this purpose. 
  
The elements americium and curium are obtained as by-products of the large-scale 
production of plutonium-239, or by irradiation of plutonium-239 or isotopes of 
transplutonium elements in special high-neutron-flux reactors. The plutonium in a 
typical pressurized water reactor fuel is approximately 14% 241Pu  after 33,000 Mwd/t 
burnup, producing 241Am by beta decay with a half-life of 14.4 years. Kilogram 
quantities of americium-241 can be separated from irradiated fuel by a combination 
of precipitation, ion exchange, and solvent extraction. 
 
Isotopes of curium are also found in waste streams from plutonium-239 production, but 
in amounts smaller than those of americium. Curium (as 242 Cm and 244 Cm ) is produced 
in nuclear reactors primarily by the beta decay of 242 Am  and 244 Am , isotopes that were 
formed by neutron capture in 241Am  and 243Am , respectively. The amount of 244Cm  
accumulated in process wastes and in unprocessed irradiated fuel elements as of 2000 is 
estimated to be more than one ton. The high specific radioactivity (18.1-year half-life) 
of 244 Cm  means that it has to be considered in separation schemes for reprocessing and 
transmutation, but it decays to low enough levels in a few hundred years that long-term 
storage is not a concern. Separation and purification of curium and americium is best 
carried out by the ion-exchange procedures described below because both are present as 
+3 ions, which have similar chemical properties. 
 
The sequence of neutron captures and beta decays that forms transuranium elements by 
slow neutron capture starting with plutonium-239 is shown in Figure 1. A high neutron 
flux is essential to expedite the production of transplutonium elements. Starting with 1 
kg of 239 Pu , about 1 mg of 252Cf would be present after 5-10 years of continuous 
irradiation at a neutron flux of 3×1014 cm-2⋅s-1. To increase the production rate, large 
quantities of 239 Pu  can first be irradiated in production reactors, followed by continued 
irradiation in higher-neutron-flux reactors. The High Flux Isotope Reactor (HFIR) at 
Oak Ridge National Laboratory in Tennessee can provide neutron fluxes of about 
2×1015 cm-2⋅s-1. This reactor has made major contributions to the production of 
transcurium elements. A special facility was established at Oak Ridge in 1966 to 
fabricate plutonium targets, to extract transplutonium elements from the highly 
irradiated targets, and to provide pure samples of transplutonium nuclides as heavy as 
257 Fm for research and industry. Neutron irradiation cannot be used to prepare the 
elements beyond fermium ( 257 Fm ) because some of the intermediate nuclides have such 
short half-lives that the low equilibrium concentrations present effectively prevent the 
formation of significant amounts of the desired elements. Thus, only milligram amounts 
of einsteinium and picogram amounts of fermium can be obtained by protracted neutron 
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irradiation even under the most favorable circumstances. Isotopes that are sufficiently 
long-lived for work in weighable amounts are obtainable at least in principle for all of 
the actinide elements through einsteinium. The elements above einsteinium appear 
likely to remain amenable to chemical study only by tracer techniques because (except 
for 257 Fm ) only isotopes with short half-lives are known, and because is it unlikely that 
isotopes of the elements beyond einsteinium can be formed in weighable quantities by 
neutron irradiation or any other process.  
 

 
 

Figure 1. Nuclear reaction sequence for production of transplutonium elements by 
intensive slow-neutron irradiation. The principal path is shown by heavy arrows 

(horizontal, neutron capture; vertical, beta decay). The sequence above 258 Fm  is a 
prediction. 

 
Although Figure 1 indicates that the heaviest actinides (Md-Lr) are produced in nuclear 
reactors, the half-lives of their isotopes are so short that the only practical way to study 
these elements is to synthesize them by bombardment of heavy-element targets such as 
249Cf  with ions such as α  particles or 16O  in cyclotrons or accelerators, followed by 
very rapid separation. Table 1 lists the primary actinide nuclei used for laboratory 
studies. 
 

Element, Z Isotope Half-life 
actinium, 89 227 Ac  21.772 a 

thorium, 90 232Th  1.405×1010 a 

protactinium, 91 231Pa 3.276×104 a 
uranium, 92 233U  1.592×105 a 

 238 U a 4.468×109 a 

neptunium, 93 236Np 1.54×105 a 
 237 Np  2.144×106 a 

plutonium, 94 238Pu              87.7 a 

 239Pu  2.411 × 104 a 

 240Pu             6564 a 

 242Pu  3.733×105 a 
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 244Pu  8.08×107 a 

americium, 95 241Am         432.2 a 

 243Am  7370 a 

curium, 96 244Cm  18.10 a 

 245Cm  8500 a 

 246Cm  4760 a 

 247Cm  1.56×107 a 

 248Cm 3.48×105 a 
 250Cm b ~8300 a 

berkelium, 97 247 Bk  c 1380 a 

 249Bk  330 d 

californium, 98 249Cf  351 a 

 252Cf  2.645 a 

einsteinium, 99 253Es  20.47 d 

 254Es  275.7 d 

 255Es  39.8 d 

fermium, 100 257 Fm  100.5 d 

mendelevium, 101 none  
nobelium, 102 none  
lawrencium, 103 none  

a Natural isotopic composition is 99.275% 238 U , 0.720% 235 U and 0.005% 234 U . Half-life given is 

for the major constituent 238 U . 
b Produced only in very small amounts from neutron irradiations in thermonuclear 
explosions. 
c Produced so far only in tracer quantities from charged particle irradiations. 

 
Table 1. Long-lived actinide nuclides suitable for physical and chemical 

investigation (a = year, d = day). 
 
 
 
- 
- 
- 
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