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Summary 
 
Conducting polymers (CPs) were first produced in the 1960s and they are the most 
recent generation of polymers. CPs have both electrical and optical properties similar to 
those of metals and inorganic semiconductors, but they also exhibit the attractive 
properties associated with conventional polymers, such as ease of synthesis and 
flexibility in processing. This primer presents an introduction to the physical and 
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electrochemical properties and covers main applications of CPs in many fields. The first 
part is focused on the charge transport mechanism of CPs. Synthesis strategies applied 
to CPs are reviewed in the second part. The following sections are focused on the ion 
transport kinetics during redox processes of CPs and the advantages of use 
functionalized monomer in order to obtain CPs with desirable properties. Finally some 
applications of CPs are reviewed. 
 
1. Introduction 

Conducting polymers were “practically” predicted in 1962 by John Pople and S.H. 
Walmsley before their experimental discovery. In this classical paper Pople and Walms-
ley introduced the concept of “solitons” in polyacetylene (PA). The authors suggested 
that such a defect could be mobile and, if charged, could be responsible of high electri-
cal conductivity. In a series of papers in 1963, D.E. Weiss and coworkers reported high 
conductivity in iodine oxidized polypyrrole. In the first part of this series the authors 
described a chemical examination of polypyrrole and they suggested that it may be 
regarded as a three-dimensional network of pyrrole rings interconnected by direct 
carbon to carbon linkages. In the second part the authors suggested that the molecular 
iodine is present as a charge-transfer complex. In the latter paper (part III) they 
described further experiments that show  the influence of charge-transfer complexes of 
polypyrrole on its electronic properties. These papers also describe the effect of iodine 
doping on conductivity, the conductivity type (n or p), and electron spin resonance 
studies on polypyrrole. In 1968 the properties of organic semiconductors, especially the 
polyanilines, were reviewed by R. De Surville. 

A key discovery in the development of CPs was the finding in 1973 by Walatka et al. 
that the inorganic polymer polysulfur nitride (PSN) is a metal. The metallic character of 
PSN, is an intrinsic property of the material, related to the presence of one unpaired 
electron for each S-N unit. As a result, the highest occupied electronic levels (i.e., 
valence band) are only half-occupied. Since there is no forbidden gap between the 
highest occupied and lowest unoccupied levels, the unpaired electrons can readily move 
under the application of an electrical field giving rise to electrical conductivity. Most 
other polymeric materials correspond to closed-shell systems, where all the electrons are 
paired, and such an electronic configuration leads to dielectric polymers. 
 
In 1977 Gill et al. observed that the room-temperature conductivity of PSN, can be 
enhanced by an order of magnitude following exposure to bromine and similar 
oxidizing agents. The conducting entity is now no longer a neutral polymer but a 
polymeric cation, charge neutrality being preserved by incorporating into the material 
the reduced form of the oxidizing agent (such as Br3

- in the case of exposure to 
bromine). Another major breakthrough in the area of CPs happened in 1977 when 
McDiarmid et al. applied to PA, an intrinsically insulating organic polymer, the same 
redox chemistry used by D.E. Weiss et al. and Gill et al. They discovered that the 
conductivity of PA can be increased by exposing it to oxidizing or reducing agent. In 
2000 the Nobel Prize in chemistry was awarded to Alan Heeger, Alan MacDiarmid, and 
Hideki Shirakawa, recognizing their breakthrough discovery of high conductivity in PA. 
This process is often referred to as "doping" by analogy with the doping of inorganic 
semiconductors, but this term is not correct because in this case a net redox reaction 
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happens inside the polymeric material and the insulating neutral polymer is converted 
into an ionic complex consisting of a polymeric cation (chemical reaction 1), or anion 
(chemical reaction 2), and a counterion. In solid-state physics terminology, the use of an 
oxidizing agent corresponds to p-type doping and that of a reducing agent to n-type 
doping. The doping reactions are usually summarized as: 
 

Neutral chains aqCP (A ) S [CP A S ] en
n mn m n− + −+ + → +  [1] 

 

Neutral chains aqCP (C ) e S [CP C S ]n
n mn n m− − −+ + + →           [2]      

             
where the different symbols mean: aqueous (aq), anion (A-) cation(C+), electron (e), 
solvent (S) and “ m ” and “ n ” are stoichiometric coefficients. In 1979 Diaz et al. 
manufactured free-standing PPy films with excellent electrical and mechanical 
properties using an electrochemical method, proving that the electrochemical synthesis 
is more suitable than the chemical synthesis when thin films and specific oxidation 
states of polymer are needed. 
 
In summary, CPs have in common a significant overlap of delocalized π-electrons along 
the polymer chain (Figure 1), but this is itself insufficient for electrical conductivity, for 
which redox perturbation of the polymer chain is necessary. For example, the oxidation 
of the polymer produces a more conducting material, an electron-deficient polycationic 
chain where the charge compensation is achieved by the uptake of anions from the 
surrounding medium (Figure 1b). CPs are therefore ionomeric in their conductive 
forms. In practical applications the most widely used polymers are of the PA, 
polypyrrole (PPy), polythiophene (PT) and polyaniline (PANI) types, on grounds of 
stability and ease of preparation. 
 

 
 

Figure 1. Chemical structures of some organic conducting polymers: reduced (a) and 
oxidized (b) polyacetylene, polypyrrole (c) and polythiophene (d). 
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Unfortunately, due to the large amount of work carried out in this field, a review of this 
type cannot be comprehensive. Hence, for this primer, recent developments and 
examples of the state-of-the art were selected. Wherever possible, we direct the reader 
to the primary literature where significantly more examples and details await the 
interested reader. 
 
2. Nature of the Charges Appearing on the Polymer Chains upon Doping 
 
An extraordinarily large range of conductivity can be obtained upon doping of CPs, the 
conductivity increases as the doping level rises. Both n and p type dopants, as well as 
protonic acid doping, have been used to induce an insulator–metal transition in CPs. 
Charges introduced into the polymers and oligomers through doping are stored in 
different states called solitons, polarons, and bipolarons. The nature of the charge 
carriers is dependent on material and doping level.  
 
When a charge moves through a dielectric crystal, it will be permanently surrounded by 
a region of lattice polarization. Moving through the crystal, the charge carries the lattice 
distortion with it. The moving charge together with the accompanying self-consistent 
polarization field can be treated as a quasiparticle called a “polaron” with its own 
particular characteristics, such as effective mass, total momentum, energy, etc. In an 
organic polymer chain, it is energetically possible to localize the charge that appears on 
the chain and to have, around the charge, a local distortion (relaxation) of the lattice. 
This process causes the presence of localized electronic states in the gap due to a local 
upward shift of the HOMO and downward shift of the LUMO. In this way is possible 
the formation of what condensed-matter physicists call a polaron. In chemical 
terminology, the polaron is just a radical ion (charge carriers with a net spin associated 
with a lattice distortion and the presence of localized electronic states in the gap).The 
ability of a charge to significantly deform the lattice around it is the manifestation of a 
strong electron-phonon coupling. In the absence of chemical and physical defects, the 
charge transport mechanism in both CPs and molecular single crystals results from a 
delicate interplay between electronic and electron-vibration (phonon) interactions. 
According to the seminal Su–Schrieffer–Heeger (SSH) model, addition of extra charges 
to the polymer chains is expected to lead to the formation of polarons, the appearance of 
localized electronic levels inside the otherwise forbidden bandgap, and the emergence 
of new optical transitions. 
 
Now, it is important consider what happen when a second electron is removed from the 
polymer chain: Is it more favorable to take the second electron from the polaron or from 
anywhere else on the chain (in this case we have two polarons)? In the former case, a 
bipolaron is formed. Bipolaron is defined as a pair of like charges (such as dication) 
associated with a strong local lattice distortion. The bipolaron can be thought which as 
analogous to the Cooper pair in the BCS theory of superconductivity, which consists of 
two electrons coupled through a lattice vibration, i.e., a phonon. The formation of a 
bipolaron implies that the energy gained by the interaction with the lattice is larger than 
the Coulomb repulsion between the two charges of same sign confined in the same 
location. 
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Doped PT, polyparaphenylene (PPP), and PPy can display conductivity which does not 
seem to be associated with unpaired electrons but rather with spinless charge carriers. 
Electron spin resonance (ESR) experiments indicated that charge carriers in conducting 
organic polymers are different from those in inorganic semiconductors. At low doping, 
the ESR signal grows and it is according to the fact that polarons with spin 1/2 are 
formed. At intermediate doping, the ESR signal saturates and then decreases, which is 
consistent with polarons recombination to form spinless bipolarons. At high doping 
level no ESR signal is observed although the system is highly conducting, indicating 
that the charge carriers in that regime are spinless. 
 
Trans-PA is unique so far among CPs because it has  a degenerate ground state, i.e., two 
“geometric” structures corresponding exactly to the same total energy. An interesting 
property of pristine PA is that it shows a strong EPR signal, indicating the formation of 
neutral radicals during its synthesis. Possibly, chains with uneven numbers of carbon 
atoms are apparently formed. During the initial phases of doping this EPR signal 
disappears. Unlike chemists, solid-state physicists like to view the above spin or charge-
carrying segments of PA as perturbations or, as they call them, “excitations” in very 
long or infinite PA chains. It has been suggested that an isolated charge on a trans- PA 
chain constitutes a boundary between a segment of the chain adopting the geometric 
structure corresponding to one of the potential wells and a segment adopting the 
structure corresponding to the other well. The latter is a consequence of the existence of 
a degenerate ground state in trans-PA. In physics terminology, such a charge associated 
with a boundary or domain wall is called a “soliton”, because it has the properties of a 
solitary wave which can propagate without deformation and dissipation. A soliton can 
also be viewed as an excitation of the system that leads from one potential well to 
another well of the same energy. Compared to a polaron, the soliton has unusual spin-
charge relationships: since a neutral soliton is a radical it has a spin 1/2 whereas a 
charged soliton is spinless. 
 
The charge transport in PANI was initially described as quasi-one-dimensional 
conductor with three-dimensional “metallic” states. The significant charge-interchain-
transfer rate inside the crystalline region was supposed to result in the “metallic” 
bundles. Between the bundles are the amorphous (less-ordered) regions in which charge 
hopping dominates the macroscopic conductivity. The latter model was not consistent 
with the new experimental data. By means of low and high field ESR measurements, it 
was proved that the conducting properties of PANI and poly[N-methyl(aniline)] 
(PNMA) are predominantly caused by a three-dimensional charge hopping between 
different polymeric chains rather than by individual one-dimensional conducting chains. 
However, the intrinsic properties of the charge carriers in PANI are still under debate. 
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Figure 2. Oxidation states of polyaniline: leucoemeraldine (a), emeraldine base (b), 
pernigraniline (c) and emeraldine salt (d). 

 
Both polarons and bipolarons are considered to contribute to the conduction of polymers 
like PPy, PPP, and PT. This is clearly distinctive to PANI and its derivatives, which 
become insulating and spinless at high oxidation states. Polaron pairs are supposed to be 
responsible for these decreases. The double charged polaron pairs are supposed not to 
be conducting, because the hopping probability of two charges in a single chain 
simultaneously is too small. PANI and its derivatives are different from other CPs like 
PPy in that the nitrogen atoms participate in conjugation and they do not have the 
bipolaronic spinless conducting state (Figure 2). In summary, formation of polaron pairs 
causes the localization of polarons, and this may be responsible for the disappearance of 
spin and decrease in conductance at high doping levels in PANI and PNMA. 
 
3. Mechanism of Charge Transport in CPs 
 
Understanding the basic charge transport mechanisms of CPs is not only of fundamental 
academic interest. It has great technical relevance because more professional knowledge 
may help to increase transport efficiency with the consequences of increased device 
speed, reduced power loss and avoidance of excessive heating in such promising fields 
as pixel-resolved full color organic light emitting diode (OLED) displays, organic field 
effect transistor (OFET) integrated circuits, artificial muscles or photovoltaic cells.  
 
At present a theoretical prediction of mobility of charge carriers for a given molecule in 
a given crystal structure is not possible. Therefore, first of all, reliable experimental data 
are required to find out, how large the transport parameters are, and under which 
conditions which kind of transport model can be applied. The question of whether 
polarons or bipolarons are the more stable entities in CPs is still under debate. 
 
The charge-transport properties of conjugated materials critically depend on the packing 
of the molecules or chains and the degree of order in the solid state, as well as on the 
density of impurities and structural defects. As a result, the measured mobility values 
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can vary largely as a function of sample quality. From the perspective of a theoretical 
physicist, CPs are viewed as the limit of finite linear π-conjugated molecules. From a 
materials perspective, CPs are considerably more complex than theorists' idealizations. 
Typically, the polymers do not yield good crystals (polydicetylene is an exception) and 
they consist of mixed crystalline and amorphous regions. On the other hand, injection of 
charges into (disordered) conjugated polymers is believed to induce local distortions of 
the geometric structure. 
 
Sirringhaus et al. have presented evidence that, at very high p-doping levels, the 
transport properties of PT become those of a metal. Theoretically, this can be 
understood by considering that the broadening of the bipolaron states in the gap upon 
increasing the dopant concentration eventually leads to the merging of the lower and 
upper bipolaron bands with the valence band (VB) and the conduction band (CB), 
respectively. During p-type doping, this results in a new unfilled VB and the possibility 
of a conventional metallic-like conduction mechanism. This can only happen with PT 
due to its low bandgap value (2.0 eV) and the possibility to reach high dopant 
concentrations (theoretically estimated around or larger than one dopant per every other 
monomer unit). Such doping levels are not experimentally achieved with other CPs. 
Figure 3 shows the change of electric resistance of a PT film with the applied potential. 
It is clear that increasing the p-type doping (at higher potentials) a dramatic increase of 
conductivity (decrease of resistance) is observed. 

 
 

Figure 3. Variation of film resistance, perpendicular to the electrode, with the applied 
potential for the Pt(111) electrode coated with a polythiophene film (about 100 nm 

thick). Data measured using electrochemical impedance spectroscopy. The electrolyte 
was 0.1 M NaClO4 in dry and argon saturated acetonitrile. 
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A synthetic method that allows the synthesis of highly conducting polymer with 
metallic behavior is called self-stabilized dispersion polymerization, as it was 
demonstrated for the case of PANI. In contrast to conventional homogeneous/dispersion 
polymerization using an aqueous medium containing aniline, acid and oxidant, this 
polymerization is carried out in a heterogeneous biphasic (organic and aqueous) mixture 
without the use of any stabilizers. It has been suggested that the anilinium hydrochloride 
monomer is like a surfactant, with a polar hydrophilic head and an organic hydrophobic 
tail. The monomers and growing polymer chains act as interfacial stabilizers, resulting 
in excellent dispersion of the organic phase inside the aqueous reaction medium. The 
organic phase tends to separate the aniline monomers and grown PANI chains from the 
reactive ends of the chain in the aqueous phase, thereby suppressing undesirable side 
reactions (such as ortho-coupling or Michael reductive additions). The PANI samples 
prepared with the above method showed room-temperature conductivities up to 1,000 S 
cm-1 and typical metallic behavior. 
 
A second way for achieve high conductivities was demonstrated for the case of 
regioregular poly-3-hexylthiophene (RR-P3HT). Self-organization of the polymer 
chains leads to a lamellar structure with two-dimensional sheets built by strongly 
interacting conjugated segments; as a result, the material displays room temperature 
mobilities up to 0.1 cm2 V-1 s-1. In 2001, Schön et al. demonstrated that the electrical 
properties of RR-P3HT can be modified over the largest range possible, from insulating 
to superconducting. The authors reported a distinct metal-insulator transition and 
metallic levels of conductivity in a polymer field-effect transistor. The active material 
was solution-cast regioregular poly(3-hexylthiophene), which forms relatively well 
ordered films owing to self-organization, and which yields a high charge carrier 
mobility (0.05–0.1 cm2 V-1 s-1) at room temperature. At temperatures below 2.35K, with 
sheet carrier densities exceeding 2.5 x 1014 cm-2, the PT film becomes superconducting. 
The authors suggest that the appearance of superconductivity seems to be closely related 
to the self-assembly properties of the polymer, where the introduction of additional 
disorder was found to suppress superconductivity. This may explain why 
superconductivity has not been observed in chemically doped conjugated polymers. In 
this case, the disorder introduced by the impurities probably destroys the 
superconducting phase. 
 
One way to understand the properties of CPs and the relationship between them and the 
structure is the study the properties of oligomer series. In a seminal work Diaz et al. 
studied the electro-oxidation of various aromatic monomers and oligomers and 
particularly the relationships between the number of repeated units in the substrate 
molecule and the oxidation potential as well as the UV-vis absorption maximum of the 
oxidation product (soluble as well as deposited on the electrode). As is was predicted by 
theoretical calculations, it was observed that the oxidation potential shifts to less 
positive values with an increasing number of monomer units in the educt, whereas the 
absorption maximum shifts considerably to longer wavelengths. Banerjee et al. 
synthesized a well-defined series of poly-p-phenylene oligomers containing up to eight 
phenylene moieties with branched alkyl (i.e., 6-tetradecyl) groups as the end-capping 
substituents and solubilizing groups. The authors reported that the low-energy electronic 
transitions of the cation radical and all electronic and optoelectronic properties of poly-
p-phenylenes, containing up to seven phenylene moieties, have a linear relationship 
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with 1/n ratio (where n is number of phenylene moieties). For example, the authors 
reported the following quantitative relationship between the oxidation potentials and the 
number of phenylene rings in various polyphenylenes: Eox (V vs SCE) = 1.3 + 0.74/n. 
The slope from the equation for linear fit of the curve between Eox and 1/n is a 
quantitative measure of the effective conjugation. A linear extrapolation, of the latter 
relationship results in a value of 1.3 V vs SCE for the oxidation potential of an infinitely 
long poly-p-phenylene polymer. The lowering of the oxidation potentials with 
increasing number of phenylene units, in first approximation, could represent the rise of 
the HOMO levels as it is expected for all CPs. 
 
 
- 
- 
- 
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