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Summary  
 
In this chapter, the rheology of a special class of complex fluids is analyzed and 
reviewed. In particular, attention is focused on the dynamic behavior of systems 
constituted by aqueous phases of surfactants, namely, micellar solutions and lamellar 
liquid crystalline phases. Surfactants are molecules that possess a polar head and a non-
polar tail (i.e., amphiphiles). The polar head may be nonionic or it may posses a charge, 
in which case they are classified as anionic (negatively charged), cationic (positively 
charged) and zwitterionic or amphoteric. In ionic surfactants, the polar head is balanced 
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by the presence of counterions. In an aqueous environment, surfactants can form a 
variety of microstructures such as micelles, vesicles and liquid crystalline phases, the 
conformations of which can be modified by the action of an external flow. Micellar 
solutions and liquid crystalline lamellar phases are microstructured fluids with 
fascinating rheological properties that have been studied intensively both scientifically 
and technologically in recent years. 
 
The chapter deals with the linear and nonlinear viscoelastic properties of wormlike, 
giant micellar systems and of surfactant-based lamellar liquid crystalline phases. The 
non linear properties of wormlike micellar solutions are given special attention, in 
particular, to such interesting phenomena like shear-banding and shear thickening. 
Stability analyses under steady shear and transient flows are also described. Regarding 
the rheology of lamellar mesophases, attention is given to the shear-induced transition 
from aligned layers to multi-lamellar vesicles (MLV). 
 
The emphasis of this chapter is to provide with an introduction to the latest 
developments in these fields by describing the experimental advances and techniques 
and the theoretical understanding and interpretation of the phenomena involved. A state 
of the art and ample bibliography is provided at the end of the chapter for further study. 
 
1. Introduction 
 
Micellar solutions and liquid crystals belong to the class of systems known as complex 
fluids. Surfactants reversibly self-assemble in aqueous (and non polar) environments 
and, unlike ordinary molecular solutions, the size, shape and aggregation geometry of 
these aggregates can be modified by external influences such as temperature, pressure 
and flow. Surfactants in aqueous solutions self-associate to form microstructures 
including long wormlike micelles, liquid crystals, vesicles, etc. (Israelachvili, 1991). 
Above the critical micelle concentration (cmc), they form small spherical micelles. A 
change of shape and growth from spheroidal to elongated micelles can occur by 
modifying parameters such as surfactant concentration, temperature, counterion or ionic 
strength (Israleachvili, 1991). Often these changes can lead to the formation of giant 
wormlike micelles that can be microns long. 
 
In the dilute solution regime, above the cmc, adding amphiphiles to a micellar solution 
may result in a spontaneous assembly of macroscopic bilayer sheets, when the preferred 
aggregation geometry is the planar bilayer, which is achieved when the surfactant 
packing parameter, ( / ) 1v al ≈ , being v the chain volume, a the head-group area and l 
the chain length (Israelachvili, 1991). This process is in fact, a first-order transition 
from a dilute phase of isolated amphiphiles into a condensed 2-D bilayer phase. The 
phase behavior associated with micelles whose spontaneous aggregation geometry is a 
cylindrical 1-D phase, can be regarded as an intermediate packing geometry of a higher 
growth dimensionality (1/ 3 / 1/ 2v al< < ) than that of a spherical micelle ( / 1/ 3v al < ) 
and lower than that of a planar bilayer.  
 
Early molecular theories dealing with micelle formation considered first the lamellar 
structure (Debye, 1948; 1949) suggested by McBain (1913). Later, Halsey (1953) 
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amended the energy expression to consider cylinders and concluded that 1-D growth 
will be rods and not disks or bilayers. The process of minimization of the free energy of 
a micelle, which comprises the repulsive interactions between the head groups on the 
micelle surface and the attractive van der Waals interactions between the tails, provides 
with the necessary conditions for achieving the equilibrium size and the critical micelle 
concentration. However, with surfactants that have a large surfactant packing parameter, 
the preferred structure will be onion-like vesicles and not micelles. Lamellar structures 
at given concentrations form liquid crystalline phases exhibiting a complex rheological 
behavior. Attention to these systems is given in Section 3 of this chapter. 
Giant micelles resulting from the growth of cylindrical 1-D structures are equilibrium or 
“living polymers” as the micelle molecular weight fluctuates with time, as opposed to 
conventional polymers where their molecular weight is constant. These micelles can 
interact themselves to form rings or branched structures that lead to the formation of 
elastic networks with fascinating rheological properties. As is described in several 
sections of this chapter, the rheological behavior of these micelles can be dominated by 
the rate of reversible scission. Theoretical models aimed to interpreting measurements 
of rheological properties focus on the dynamic processes of micellar diffusion and the 
kinetics of micellar breakage and recombination to set the time scales for relaxation in 
entangled wormlike micellar solutions (Cates and Fielding in Kaler and Zana, 2007). 
 
The flow properties of viscoelastic surfactant solutions include near-Maxwellian 
behavior in the linear regime and a drastic shear thinning in the non-linear regime. 
Section 2.1 deals with linear viscoelasticity and the kinetic process of fusion and 
scission reactions of micelles, together with the relevant relaxation mechanisms that 
govern the dynamics of these systems. In the strongly entangled region where the 
micellar solution is viscoelastic at rest, strong shear thinning is usually observed. This 
flow behavior is analyzed in Sections 2.2-2.4. A very interesting phenomenon 
consisting in that the solution becomes highly viscoelastic after a period of shearing 
occurs at low concentrations, where the quiescent solution is almost inviscid. These 
effects have been termed shear thickening and attention to them is given in Section 2.5. 
 
Lastly, it is worth mentioning that viscoelastic surfactant solutions have generated not 
only scientific interest, but also they have been used in applications ranging from 
detergents, hydraulic fluids and slurry transport fluids; the oil and gas industry has also 
employed these fluids in well completion and stimulation applications (Wasan and 
Ginn, 1988). Since the micellar structure is dynamic and can be controlled by the local 
fluid environment, it can be destroyed upon exposure to hydrocarbon fluids or modified 
by adjusting the salinity. Either of these effects, in turn, modifies the solution viscosity. 
A review of the relevant scientific aspects and industrial applications of a class of 
viscoelastic surfactant solutions is provided elsewhere (book edited by Wasan and Ginn, 
1988; Zana and Kaler, 2007).    
 
In the following sections, a brief review and introduction into the rheological behaviors 
of giant micellar systems and of lamellar liquid crystalline phases are provided in this 
chapter. Recent developments on the most important manifestations of the dynamics of 
these systems are further examined in this chapter. 
 
2. Wormlike Micellar Systems 
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2.1. Linear Viscoelasticity 
 
An important aspect in the rheological characterization of micellar solutions is the study 
of the relaxation process occurring after fast perturbations acting upon the solution. The 
relaxation in micellar solutions involves a fast and a slow process. Micellar systems are 
in dynamical equilibrium with free surfactant molecules in solution, in such a way that 
the surfactant molecule is exchanged between the micelles and the inter-micellar 
solution. This exchange process occurs simultaneously to that of breakage-
recombination of the micelles. The time scale of the exchange process is much faster 
than that associated to the breakage-recombination dynamics. The latter process 
involving the kinetics of scission/fusion reactions has been treated by Kahlweit (1981), 
Cates (1987), and Turner and Cates (1990). 
 
Wormlike micelles with an exponential distribution of length has been considered by 
Cates (1990), although it is well established that spherical micelles can coexist with 
elongated ones, and thus the distribution of micellar lengths can be bimodal (Eriksson, 
1990). The exponential distribution is the result of mean field theory. In a system where 
there are no closed loops nor branch points, let us consider c(N) the number density of 
aggregates of N monomers. In this case the mean-field free energy density obeys (Cates, 
1990) 
 

( ) ( )B Bln /
N

F k T c N c N E k T= +⎡ ⎤⎣ ⎦∑                  (1)  
 
where Bk T  is the Boltzmann temperature and E accounts for the two end-caps energy 
per chain. The term ln( )c c comes from the entropy of mixing of micelles of different 
lengths or sizes. These are the terms sensitive to the micellar size distribution ( )c N , 
while all other contributions reside in the reference free energy 0 ( )F φ , which depends 
only on the total volume fraction ( )φ . Minimization of Eq. (1) at fixed total volume 
fraction gives an exponential size distribution 
 

[ ]1/ 2
B( ) exp{ / }; exp / 2c N N N N E k Tφ∝ − =              (2)      

               
The micellar length distribution can be described in terms of either the number density 

( )ASc t of aggregate SA , which is a function of s (the aggregation number) or of the 
moments of the distribution. In the latter, the zero-order moment is the total number 

( )Z t of aggregates and this moment is not affected by the exchange reaction. In the time 
scale of the scission-fusion process, the change of Z with time can be observed, since it 
is the slower time scale where the kinetics imposes relations between ASc  and Z .  
 
After a perturbation, the equilibrium values ASc and Z  are modified as: 
 

( ) ( )AS AS ASc t c c t= + Δ  
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( ) ( )Z t Z Z t= + Δ                            (3)      
                          
The time dependence of the total number of micelles Z  can be established according to 
the following kinetic equation: 
 

1

1

( )

k

S k k S
k

A A A
−

−

⎯⎯→
+

←⎯⎯
 

which is described as 

1 ( ) 1A S k Ak AS
dZ k c c k c
dt − −− = −                       (4) 

                            
In Eq. (4), the first term of the right-hand side represents the fusion reaction of the 
micelles and the second term represents the scission reaction per unit time. 1k and 1k− are 
the fusion and scission rate constants, respectively. In equilibrium, 
 

1 1( ) ASA S k Akk c c k c−− =                          (5)      
                        
According to the first order perturbations (3) and summing the right-hand side terms of 
Eq. (4) over all values of s and k leads to (Zana et al, 2007): 
 

( ) ( )
1

d Z t Z t
dt

θ β
θ

Δ
= − Δ

−
                       (6)      

                        
where 
 

1
,

( , ) AS
S k

k s k c

Z
β

−

=
∑

                          (7)      

                          
WN

N
θ ∝                                (8) 

                                     
N and WN are the average aggregation number and the weight-average aggregation 
number, respectively. Equation (8) accounts for the polydispersity of the micellar size. 
According to the solution of Eq. (6), after a perturbation, the value of Z  varies as: 
 

[ ]B( ) exp /Z t Z t τ= −                          (9) 
 
where 
 

 1
B 1

θβτ
θ

− =
−

                             (10)      

                 
This result shows that the slow relaxation process is mono-exponential because it is 
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associated to a single moment of the size distribution, namely, the relaxation of Z  
controls the slow relaxation process. The other moments of the distribution correspond 
to the kinetics of the exchange process and have one or many fast relaxation times. 
 
For giant micelles, the length distribution obeys an exponential law and the 
polydispersity is equal to 2. The scission rate constant 1k−  is independent of the position 
along the micelle where scission occurs. The average scission constant is: 

 
1AS

S
s c k

Nk
Z

β
−

= =
∑

  = NkB                    (11)      

                  
  
Here Bk stands for the breakage rate constant per unit length. Eq. (10) becomes: 

 

B
B

1
2Nk

τ =                              (12)      

                           
which is a result that agrees with the expression of the relaxation time reported by Cates 
(1988, 1990). Bτ  is defined as the mean breakage time for a micelle, or the lifetime of a 
chain before breaking, and of an end before recombination. In terms of the tube theory 
(Doi and Edwards, 1986), in the regime where the scission-recombination process 
occurs, the original chain ends do not survive long enough for ordinary reptation to 
occur; instead, each tube segment has to wait for a break to occur close enough to it, 
that the new chain end can pass through the given tube segment before disappearing 
again. The distance l an end can move by reptation during its lifetime Bτ  obeys 

 
B

C 2( )D L
l
τ

≈                              (13)      

                                
where CD is the curvilinear diffusion coefficient. Since the one-dimensional diffusion 
process is similar to that of unbreakable polymers (except for the scission-
recombination), we have 

 
rep B

2 2lL

τ τ
≈                               (14)      

                             
The waiting time τ  for the appearance of a new end within l  is given by 
 

 B

lL
ττ

=                                (15)      

                                 
This gives a mean stress relaxation time in the scission-recombination regime as,  

 
1/ 2

B rep( )τ τ τ=                             (16)      
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Linear viscoelastic data of wormlike micelles show in numerous cases that the 
relaxation spectrum is very narrow and that the system is Maxwellian (Shikata, 1987; 
Cates, 1987; Candau, 1984). For example, data obtained from a wealth of surfactants 
indicate that the system indeed obeys the relations of linear viscoelastic behavior with a 
single relaxation time from low to moderate frequencies. At high enough frequencies, 
however, the system is not strictly Maxwellian, since data depart from the single 
relaxation dynamics at a given characteristic frequency. Theoretical models herein have 
identified this departing frequency as the inverse of a characteristic time ( Bτ ) that 
signals the onset for the micelles breaking process, where the scission-recombination 
kinetics occurs. 
 
Dynamic light scattering studies (Buhler, 1995; Nemoto, 1995) have also dealt with the 
viscoelastic behavior of wormlike micelles. This technique measures the lifetime of 
concentration fluctuations, which are coupled to the viscoelasticity of the system. The 
spectrum resolves two modes of relaxation: slow and fast modes. The slower relaxation 
process has a characteristic time that depends on concentration, temperature and ionic 
strength in the same manner as the terminal time of stress relaxation measured by 
rheometry.  
 
The transient nature of the wormlike micellar dynamics and the role of reversible 
scission have been invoked to explain the fact that the plateau region of the relaxation 
spectrum is similar to that of entangled polymers, and that the terminal region is 
characterized by a very narrow relaxation spectrum despite the high polydispersity of 
the micelles size (Lobl et al., 1984). Shikata et al. (1988) explained the concentration 
dependence of the plateau modulus ( 2

0G C∝ ) by invoking that the elasticity of the 
plateau region results from the formation of entanglements described as a second order 
reaction between two molecular strands. The relaxation time in the terminal region 
would be determined by the kinetics of the entanglements, in such a way that the 
scission process takes place at the entanglement junctions. The scission step is a zero-
order reaction and corresponds to bond interchange in the Cates model. As described 
above, the terminal relaxation time would result from the interplay of the dynamics of 
polymer diffusion (with characteristic time repτ ) and the kinetics of scission-
recombination (with a characteristic time Bτ ). Therefore, the ratio B rep/ζ τ τ=  
determines the broadness of the relaxation spectrum. When the kinetic process controls 
the relaxation, i.e., 〈〈ς 1, the linear viscoelastic response at low and intermediate 

frequencies is Maxwellian with a single relaxation time ( )
1

2
B repτ τ . This regime is 

usually termed fast breaking regime. In this case the lifetime of the micelle is short and 
the frequency of scission is then proportional to the average micelle length L< > , which 
is given by 1

B Lτ − ∝ < > . When the micelle lifetime is long ≈ς 1, deviations from a 
single relaxation process are observed and the broadness of the spectrum corresponds to 
that of reptation of the wormlike micelle over its whole length as in classical polymers. 
An exponential distribution of sizes yields a stretched exponential relaxation modulus. 
This regime is termed slow breaking regime. 
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At very high frequencies, corrections to Maxwell behavior have been introduced to 
describe relaxation at shorter time scales, when the diffusive process is no longer 
reptation but Rouse motion (Turner & Cates, 1991). The crossover to this time scale is 
reflected in the frequency domain by a minimum in the loss modulus. At this frequency, 
the inverse of the loss tangent /G G′ ′′ is proportional to the ratio e/L l< >  , where el is 
the entanglement length. 
 
 

 
Figure 1. Cole-Cole plots at 30 °C for wormlike micellar solutions of  CTAT as a 

function of surfactant concentration (in wt. %): ( ) 5; (*)10; ( ) 15; ( ) 20; ( ) 25; 
( ) 30 (Soltero et al.,1996). 

 

 
Figure 2. Time-concentration super-position master curves for G’ at 30 °C for wormlike 
micellar solutions of CTAT as a function of surfactant concentration (in wt. %): ( ) 5;  
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( ) 10;  (Λ) 20. 
Shifting factors are C repa τ=  and C rep 0( / )b τ η= . (Soltero et al., 1996). 

 
Figure 1 shows Cole-Cole plots (i.e., the loss, G′′ , versus the storage, G′′ , moduli) of 
cetyltrimethylammonium tosilate (CTAT) solutions at 30 °C as a function of 
concentration. The size of the osculating circle increases with surfactant concentration, 
indicating an increase in the shear modulus. At low frequencies, i.e., B 1ωτ << , all data 
follow closely the Maxwell asymptotic limit, 1/ 2

0 0/ ( / )G G G G′′ ′≈ . However, at high 
frequencies, i.e., B 1ωτ >> , deviations from the osculating circle are observed, and for 
samples with low and intermediate concentrations, G′  goes through a minimum and 
then increases at higher frequencies. This upturn is related to the Rouse motion. 
 
Time-concentration superposition is shown in Figure 2 for the storage modulus (G′ ) for 
CTAT wormlike micellar solutions. The shifting factors used are 

C repa τ= and C rep 0( / )b τ η= . Similar plots were reported elsewhere for micellar solutions 
made of a mixture of tetradecylpyridinium salicylate and tetradecyltrimethylammonium 
salicylate in presence of sodium bromide (Thurn et al, 1985). 
 
 
- 
- 
- 
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