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Summary 
 
In manufacturing processes several heat transfer phenomena may occur, of which 
boiling or condensation play a very significant role. These processes are usually applied 
in heat removal from different surfaces and can be found in chemical engineering as 
well as other areas of contemporary technology and they have huge practical 
significance, just to mention perspective applications in removal of large heat fluxes in 
electronics or power technology. Conversion one phase into the other may proceed 
equally on the wall and inside the phase; however usually the first of these cases is 
found in technical applications. Evaporation is the process of turning a liquid, at its 
saturation temperature, into vapor by applying heat. Boiling on a solid surface takes 
place when the temperature of the heated surface is higher than the saturation 
temperature of the liquid. The process reverse to boiling is condensation, where vapor 
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turns into liquid due to the removal of heat. The necessary condition for the process to 
occur is that the temperature of surface should be lower than the corresponding 
saturation temperature of the liquid.  
 
1. Introduction 
 
Evaporation and condensation are amongst the most important industrial processes 
which are used primarily in chemical technology as well as other areas of contemporary 
technology and they have huge practical significance, just to mention perspective 
applications in removal of large heat fluxes in electronics and power engineering. 
Conversion of one phase into another may proceed equally on the wall and inside the 
phase; however usually the first of these cases is found in technical applications. 
Evaporation is the process of turning a liquid, at its saturation temperature, into vapor 
by applying heat. A similar process occurs when the pressure, applied to a hot liquid is 
reduced. Such process is called flashing. Boiling is associated with rapid formation of 
vapor in the entire volume of a liquid; however it is mostly associated with superheated 
surfaces, where it is primarily promoted. Boiling on solid surface takes place when 
temperature of heated surface is higher than the saturation temperature of the liquid. The 
reverse process is the condensation process, where vapor turns into liquid due to 
removal of heat. The necessary condition for the process to occur is that the temperature 
of surface should be lower than the corresponding saturation temperature of the liquid. 
These phenomena are more complicated than issues of convection in the case of a single 
phase. Their mathematical description requires thus knowledge of the flow structure of 
both phases together with interfacial phenomena. Hence, the existing theories provide 
only simplified description of the issues related to these phenomena and require 
experimental validation.  
 
2. Pool Boiling 
 
2.1. Bubble Formation, Growth and Departure 
 
The life of a single bubble may be summarized as occurring in the following sequence 
of processes: nucleation, growth and possible collapse. Waiting period occurs in a 
bubble site just after the departure of a bubble from a surface and before a new bubble is 
formed on the heated surface. Initial growth from the nucleation size is controlled by 
inertia and surface tension effects. In the next stage of growth heat transfer becomes 
important, while inertia effects begin to lose significance. If the bubble during its 
growth, contacts the subcooled liquid, it may collapse. The bubble growth in the case of 
a saturated or superheated liquid finally reaches the size allowing it to leave the surface. 
 
Nucleation can only occur if a liquid is superheated. There are two types of nuclei 
which can promote such a process. One type is formed in a pure liquid resulting from 
fluctuations of liquid molecules. The other type can be a cavity on the heating wall or 
suspended foreign material  (Figure 1). According to the kinetic theory of gases, in the 
case of pure gases and liquids the local fluctuations create clusters of molecules acting 
as nuclei for prospective vapor bubbles. Creation of nuclei is related to overcoming the 
energy barrier. If a liquid superheat is increased, more liquid molecules can be 
converted to vapor. The size of the nucleus, in order to be active, must exceed the 
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thermodynamic equilibrium. The condition for thermodynamic equilibrium at a vapor-
liquid interface in pure substance can be written as: 
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In Eq. (1) 1R and 2R  are the principal radii of interface curvature. For a spherical 
nucleus of radius R ,  Eq. (1) becomes the Laplace equation: 
 

G L 2 /p p Rσ− =          (2) 
 
Difference of pressure between gas and liquid corresponds to superheat of the liquid 
near the wall G S-T T . To determine the minimum radius of the bubble at equilibrium we 
make use of the Clausius-Clapeyron equation: 
 

LG

G L( )
hdp

dT v v T
=

−
         (3) 

 
Expressing (3) with finite-differences instead of infinitesimal differences and assuming 

G Lv v  one can obtain: 
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Combination of (2) and (4) yields the critical radius for the bubble at the equilibrium 
state: 
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Hence for increasing superheat, the nucleation site size can be smaller. A smaller 
nucleus will collapse and a larger nucleus will grow. Labuncow (1959) showed that 
most probable places for nucleation are cavities on the heating surface. Critical radius 
determined by (5) may be taken as equal to the radius of cavity. Possible examples of 
nucleation sites are shown in Fig. 1. The liquid temperature can be taken as in the liquid 
immediately adjacent to the heating surface. That means the temperature of the liquid 
can be represented by the temperature profile in the thermal boundary layer. Bubble will 
grow when its temperature of bubble is lower than the temperature of the liquid and the 
pressure inside the bubble is higher than the pressure of the surrounding liquid. The 
schematic of the favorable conditions for the bubble growth model is presented in Fig. 
2. 
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Figure 1. Examples of nucleation sites. 
In the case when temperature of liquid is lower than the temperature of the bubble 

L GT T< , vapor bubbles cannot exist. The range between the minimum, miny , and 
maximum, maxy , sizes of bubbles corresponds to temperature range where temperature 
of the surrounding fluid is greater than the vapor temperature inside the bubble. In such 
a case the bubble can increase its size.  
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Figure 2. Active size range of nucleation sites. 
 
There is a “waiting period” between the time of release of one bubble and the time of 
nucleation of the next at a given nucleation site. To predict the waiting period Hsu and 
Graham (1976) proposed a model based on heating of the liquid by transient 
conduction. When the size of a bubble nucleus formed in a liquid exceeds that of 
thermodynamic equilibrium the bubble will grow. During the initial stage of growth, the 
inertia of surrounding liquid and the surface tension forces control the growth process. 
At a later stage of bubble growth, heat diffusion effects control its growth. 
 
The bubble contact with a heated surface is sustained by the force balance, see Fig. 3. 
This balance includes surface forces, buoyancy, liquid inertia due to bubble growth, 
viscous forces, and forces due to the liquid convection around the bubble. For a 
horizontally heated surface the maximum sitting bubble size can be determined as a 
function of contact angle, surface tension, and liquid-vapor density difference. Fritz 
(1935) found the bubble diameter, just before leaving the surface: 
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Figure 3. Active size range of nucleation sites; sF -surface tension force, BF -buoyancy 
force, nF -inertia force due to bubble growth, tF -flow resistance force 

 
The constant d 0.0148C =  and the contact angle φ  is in degrees. When a bubble starts 
to grow on a heating surface a time interval dt  is required for it to depart from the 
surface. As mentioned before, the time interval wt  , i.e. the “waiting period”, is required 
to heat the new liquid layer in order to promote nucleation. If dt  represents the time of 
departure, wt  the waiting period, the frequency of bubble departure bf  is then defined 
as w d1/( )t t+ . The increase of heat flux activates more nucleation sites, thus increasing 
the bubble population and reduces the time and size of departing bubbles. There is a 
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correlation between the departure size and departure frequency, which according to 
Jakob (1949) reads: 
 

1
4
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The velocity of bubble rise in a gravitational field is: 
 

b b bV D f=           (8) 
 
Heat is transferred into bulk liquid by the motion of bubbles away from the wall (latent 
heat transport). The bubbles also transport some superheated liquid around each bubble, 
or by turbulent transport in the liquid. When the bulk of liquid is subcooled the bubbles 
in contact with the subcooled bulk liquid condense and collapse. 
 
 
- 
- 
- 
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