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Summary 
 
This chapter presents an overview of industrial crystallization both from a fundamental, 
scientific perspective and with an eye on the application of crystallization as a 
separation process in industrial processes. Crystallization as a separation process yields 
a solid product from a solution or a melt. The process itself, the product characteristics 
and the temporal behavior are determined by thermodynamics, i.e. solubility of the 
materials, and crystallization kinetics, respectively. The thermodynamics of solutions 
and melts are dependent on a range of physical parameters as discussed within. 
Crystallization kinetics can be divided into two separate processes, nucleation and 
crystal growth. Both play a significant role in the design of equipment for a given 
process and are treated in detail below. 
 
Additional factors such as the effect of crystallization on product properties as well as 
the effect of solid-state properties on the crystallization process are discussed in section 
4. 
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Section 5 provides details on commonly used crystallizer designs and highlights the 
distinction between solution and melt crystallization. 
 
1. Introduction 
 
Crystallization is a thermal separation, and therefore a purification process that yields a 
solid product from a melt, from a solution or from a vapour. As for all thermal 
separations, non-equilibrium conditions are required as a driving force for the process. 
Here, evaporation of solvent or temperature reduction (cooling) are the most frequent 
means employed to establish the required non-equilibrium conditions. Pressure can, in 
principle, also be used to enforce the non-equilibrium state necessary for a phase 
change. However, in industrial applications this parameter is most frequently kept 
constant. As a consequence, processes involving pressure change will not be discussed 
here. 
 
Other technical routes to leading to crystalline products may involve chemical reactions 
(reactive crystallization), change of dielectric constant/ionic strength of a solution 
(salting-out) or crystallization induced by a change in solvent composition (drowning-
out). 
 
Those type of crystallization processes often referred to as precipitation processes will 
not be covered here [Söhnel/Garside]. 
 
The main feature distinguishing crystallization from other thermal separation processes 
is the fact that it leads to a solid product. This is one of the key reasons why it lags 
behind separation techniques involving liquid-liquid or liquid-gaseous phase change 
processes in terms of research effort expended and knowledge available. In the past 
chemical engineering has tended to avoid the solid state as far as possible due to the 
problems inherent in solids handling. Encrustation and the concomitant heat transfer 
problems, seizing of moving parts, generation of hazardous dust and the general 
difficulty inherent in solid-liquid separation are just some of the issues involved. 
However, the attitude towards crystallization is changing and the positive aspects of the 
techniques, low energy consumption and the potential for high-purity products, are 
more widely appreciated. [Mullin], [Myerson], [Mersmann], [Tavare], [Jones], 
[Nyvlt/Ulrich], [Hartl], [Jancic/Grootscholten], [Ulrich 2002 (in Kirk-Otthmer)] 
 
Crystallization is a highly selective process and operates at lower temperatures when 
compared to a separation by distillation for the same material. Melt crystallization has 
the additional advantage of not requiring a solvent, although it is not a method suitable 
for all materials. Manifold reasons exist for the growing importance of crystallization as 
an industrial separation process. On the one hand, many products are solids under 
ambient conditions, in particular in the specialty chemicals sector, in the pharmaceutical 
industry and in the manufacture of foods. On the other hand, the ability to manipulate, at 
a minimum, the macroscopic properties of crystals such as shape and size by judicious 
choice of crystallization conditions makes the technique a very attractive option in those 
industry sectors already mentioned, where reproducible product quality with well 
defined properties (flow properties, color, dissolution characteristics, polymorphic form 
etc.) are of utmost importance. [Ulrich/Glade], [Ulrich (in Hofmann 2004)], 
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[Arkenbout], [Jansens/van Rosmalen (in Hurle)], [Matsuoka (in Garside)], 
[Sloan/McGhie], [Toyokura/Hirasawa (in Mersmann)], [Ulrich 2002 (in Myerson)] 
 
In recent years a number of new monographs on industrial crystallization have appeared 
and these provide a good representation of the state of the art. A good overview of the 
developments in the field over the past 30 years can be gleaned from the proceedings of 
the International Symposia on Industrial Crystallization which take place at triennial 
intervals and are organised by the European Federation of Chemical Engineering 
(EFCE). [Mullin], [de Jong/Jancic], [Jancic/de Jong 1982], [Jancic/de Jong 1984], 
[Nývlt/Zacek], [Mersmann], [Rojkowski], [Biscans/Gabas], [Garside 1999], [Chianese], 
[Ulrich 2005] 
 
The key factors in the design of any thermal separation process are the thermodynamics 
of the system under consideration as well as its kinetics. The thermodynamics defines 
the limits of what can be achieved, the kinetics define the time-scale and therefore the 
size of the equipment required. This general statement also holds for crystallization. As 
a consequence, fundamental knowledge of phase diagrams and solubilities of the 
materials to be separated is required prior to the design of any industrial process. In 
many instances the literature only provides phase diagrams for pure materials. With 
increasing number of components phase diagrams become progressively more complex. 
Realistic systems generally contain many components and determining phase behavior 
under operating conditions is one of the greatest challenges in crystallization. 
 
Knowing the theoretical limits of a crystallization process as defined by the 
thermodynamics is only part of the picture, the other part is knowing what can be 
achieved in a finite and reasonable time scale and the information on this aspect of 
crystallization is contained in the process kinetics.  
 
Two processes are important in crystallization, both with their own characteristic 
kinetics. One of these processes is nucleation [Kashehiev], the other is crystal growth. 
Both of these phenomena are dependent on a large number of variables that in some 
cases may be ill defined.  
 
In addition, further factors that influence the number and nature of particles obtained 
have to be considered in the design of mass crystallization processes. Whenever 
suspensions of crystals in solution are involved, attrition and agglomeration have to be 
taken into account. In this chapter only the “real” kinetic parameters, nucleation and 
crystal growth, will be discussed. 
 
Finally crystals possess an internal structure, an external shape and consequently a finite 
size (or size distribution in the case of a quantity of crystals). These parameters 
determine many bulk properties of a given crystalline material, such as dissolution rate, 
bio-availability, color, flow properties etc. A general overview of these properties will 
also be provided. 
 
2. Solid-Liquid-Equilibria 
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This section provides an overview of solid-liquid equilibria and the type of information 
useful to crystallization that can be gleaned from their representation in the form of 
phase diagrams. Different types of – idealized – phase and solubility diagrams shall be 
discussed together with associated phenomena. 
 
2.1. Solubilities and Phase Diagrams 
 
A solution is a homogeneous mixture of two or more chemical species. For a liquid 
solution saturation is reached when the liquid phase, in contact with the solid phase, no 
longer changes its composition. A saturated solution therefore has a constant 
composition that is not changed by the addition of further amount of the dissolved 
material. For a two component system, the solubility of one component in the other is 
dependent on temperature and pressure. For three and more component systems the 
solubility of one component also depends on the relative amounts of the other 
components present. For liquid solutions the pressure dependence is negligible if the 
pressure difference is small (which is the case in most applications) and will not be 
considered here. However, the temperature dependence (and also the pressure 
dependence providing the difference is sufficiently large, see [Moritoki]) of the 
solubility can be considerable and it is therefore important to state the temperature for 
which the solubility is reported even under ‘normal’ conditions. In the following the 
discussion will focus on two component systems only. 
 
It is common terminology for solutions of solids in liquids to denote the liquid 
component as the solvent and the solid component as the solute, even if the amount of 
solute in the solution exceeds the amount of solvent. Various measures of composition 
are in use to report solubilities and the use of a particular set of units should be carefully 
selected to suit the purpose the data are required for. The most common measures are  
 
• Mass of solute per unit mass of solvent (kg/kg) 
• Mass of solute per unit mass of solution (kg/kg) 
• Mass of solute per unit volume of solvent (kg/m3 or g/L) 
• Molar amount of solute per unit volume of solvent (kmol/ m3 or mol/L) 
• Mole fractions (dimensionless number) 
 
From the above list it is clear that, for the first two cases, it has to be stated explicitly 
whether composition reported refers to the solvent or the solute in order to avoid 
confusion. Moreover, it is often necessary to mention the initial state of the solute, as 
many substances can exist as solvated or unsolvated solids (vide infra). For example, 
two solutions of sodium carbonate in water will have different compositions if in one 
case the decahydrate is used as starting material and in the other the same mass of 
monohydrate is employed. Ambiguity arises if this is not accounted for. 
 
The solubility of most materials increases with temperature. However, a number of 
examples exist, where the solubility shows the reverse trend (sodium sulfate, calcium 
carbonate, iron sulfate dihydrate, to name but a few). The dependence of the solubility 
upon temperature is best represented graphically in the form of a solubility curve, which 
maps the composition of a solution at the solubility limit onto the temperature. A 
generalized solubility curve is shown in Figure 1 below. The solubility is a continuous 
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function of temperature for a given form of a given material. Polymorphs of the same 
material, solvates and hydrates (vide infra) generally have different solubilities. A 
change in solid form is normally evidenced by a discontinuity in the solubility curve, 
which results from different slope, that is, temperature dependence, of the solubility of 
the respective forms. In Figure 1 the solubility of a fictitious substance A that forms 
three phases, two hydrates and one anhydrous phase, is shown. Two discontinuities can 
be seen marking the transition points between the stable regions for the trihydrate and 
monohydrate (left) and the monohydrate and anhydrous phase (right). The solubilities of 
the respective stable phases are indicated by the solid line. In addition, the solubilities of 
the different metastable forms are indicated by the dotted line. 

 
 

Figure 1: Typical solubility diagram showing the dependence of solution phase 
concentration in equilibrium versus temperature. Transition points between different 

phases are highlighted. (from [Nordhoff]). The full line represents the solubility of the 
stable phase in a given region, the dashed line represents the solubility of the respective 

metastable phases. 
 
Solubilities are determined experimentally and any convenient analytical technique that 
provides a quantitative measure of composition can be employed. Not every technique 
is suitable for every situation and the decision as to which method is used has to be 
made on a case by case basis. In the simplest case of a two component system 
containing a solute that is non-volatile and stable with respect to temperature the 
composition can be determined by taking a given mass of the solution, evaporating to 
dryness and weighing the remaining solid (solubility measurements should always be 
based upon a mass of solution due to the higher accuracy compared to volume 
measurements). The more components present and the more complex the system, the 
more difficult it becomes to accurately determine the composition by a single analytical 
technique. 
 
A number of factors have to be accounted for when determining solubilities. First and 
foremost, it is important to ensure that the solution is indeed in equilibrium. This is 
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particularly important in the case of highly concentrated, viscous solutions where 
dissolution rates may become vanishingly small the closer one approaches the 
equilibrium composition. Here it is important to provide good agitation and to allow for 
sufficient time before taking a measurement. One method to assess whether equilibrium 
has been reached is to take measurements from two solutions, one where saturation is 
approached from an undersaturated state, the other where saturation is approached from 
a supersaturated state. Both compositions should be identical within experimental error 
limits if equilibrium has been achieved. 
 
At this point it is important to stress that crystallization is a non-equilibrium process. 
The value of knowing the equilibrium properties of solutions lies in the fact that they 
dictate the operating conditions for the crystallization process. The driving force 
required for nucleation and crystal growth is the level of supersaturation in the solution 
(supercooling in melts). This means, that crystallization can only occur at solution 
compositions where the amount of solute exceeds the solubility limit. Such solutions are 
called supersaturated solutions and the region of phase space where supersaturated 
solutions exist is known as the metastable zone. The driving force for crystallization 
(both nucleation and crystal growth, see section on kinetics below) increases with 
increasing supersaturation. Supersaturation can be achieved in a number of ways, most 
commonly by cooling a saturated solution (for solutes where solubility increases with 
temperature, solutes with reverse temperature dependence must, of course, be heated) or 
by evaporation of solvent. As is the case for solubility, several measures exist to express 
supersaturation. These are the difference between the equilibrium composition at the 
temperature of the supersaturated solution *c and the actual composition in the 
supersaturated solution c  
 

- *c c cΔ = , (1) 
 
the ratio of these two concentrations  
 

  / *S c c= , (2) 
 
and, relating these two, the relative supersaturation 
 

/ * -1 c c Sσ = Δ =  (3) 
 
For melts, the driving force is usually expressed in terms of the supercooling 
 

 = * - θ θ θΔ , (4) 
 
which represents the difference between the equilibrium temperature of the melt *θ and 
the actual temperatureθ . Occasionally supercooling also finds use in solution 
crystallization. 
 
Quantifying the supersaturation is important for two reasons. As mentioned above the 
supersaturation is a measure of the driving force for the crystallization process. The 
second reason concerns the theoretical yield of the process. The theoretical yield of any 
crystallization is easy to calculate as it is given by the difference between the actual 
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composition of the feed solution at the starting point of the process and the equilibrium 
composition at the end-point of the process. This definition already accounts for any 
temperature gradients employed in the process. Of course the real yield of the process 
may differ from the theoretical yield. As the supersaturation decreases, crystal growth 
rates also decrease and the theoretical yield will only be reached in the limit of infinite 
time. The consequence of this is a lower yield than possible. On the other hand, yields 
may be higher than theoretically possible if growth is fast and if the crystals obtained 
contain a significant amount of liquid and/or impurity inclusions. 
 
 
- 
- 
- 
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