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Summary 
 
Materials enter the hydrological cycle primarily by erosion from rocks and soils and, to 
a different extent, by dissolution during that process. Land use is a major factor which, 
superimposed upon geology, determines the nature and quantity of materials 
transported. Their nature in flowing waters depends upon their elemental and molecular 
properties. Once in river systems, the processing of materials has been described by a 
number of concepts which incorporate hydrological processes with in-river ecological 
processes―the River Continuum Concept, the Spiralling Concept and the Floodpulse 
Concept are the most important. Nowadays they are collectively referred to as 
ecohydrological concepts. Apart from water, undoubtedly the two most important 
materials in river systems are the nutrients nitrogen and phosphorus which, although not 
considered ‘major’ elements in terms of quantitative composition, are ‘major’ in terms 
of the control they exert on biological systems. In most natural circumstances 
phosphorus is considered to be the limiting factor for photosynthesis, hence also 
autotrophic growth and ecosystem productivity. 
 
1. Introduction 
 
Living organisms require around 40 of the elements that naturally occur in the Earth's 
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crust and atmosphere to sustain growth and reproduction. The most important, carbon, 
is usually considered separately from the others, because it is the energy locked into 
chemical bonds between carbon atoms and those with oxygen and hydrogen atoms 
which is the basis of the photosynthetic conversion of solar energy into living tissue. 
Oxygen and hydrogen are freely available in water under most circumstances. Other 
essential elements are usually considered in two groups: the macronutrients or major 
elements, required in large quantities, and the micronutrients or trace elements, required 
in small quantities. Calcium, magnesium, potassium, nitrogen, phosphorus, sulphur and 
iron are the most important of the macronutrients, together with silicon (used in cell 
frustules by diatoms and a few other algal species), whilst copper, cobalt, molybdenum, 
manganese, zinc, boron, vanadium, chlorine and vitamin complexes are the most 
important of the micronutrients. Phosphorus and selenium are the elements derived from 
the Earth's crust (lithosphere) essential to life, whose proportional abundance is lower in 
the lithosphere than in plant tissue. Phosphorus is thus often the limiting macronutrient 
for life. Selenium, followed by zinc, molybdenum and manganese are potentially 
limiting micronutrients.  
 
In a natural, undisturbed aquatic environment, the nutrient supply is derived from the 
drainage of the catchment together with direct rainfall and any internal recycling which 
may occur from the sediments. Studies that have been made of such catchments (and in 
the northern hemisphere the more natural catchments are generally forested) have 
shown that nutrient runoff is very low because cycling within the vegetation of the 
terrestrial ecosystem is very tight. The same is true of tropical forests and savannahs. In 
the temperate zones, runoff from natural or secondary grassland is higher in nutrients 
than runoff from forested land, and runoff from arable land is higher still. Urban areas 
and effluents produce a range of high-nutrient effluents.  
 
The initial natural source of most material is weathering of rocks. Using phosphorus as 
an example, igneous rocks contain apatite―complexes of phosphate with calcium―the 
weathering and subsequent marine sedimentation of which have led through geological 
history to phosphates being widely distributed in sedimentary rocks. The common 
weathering processes of such rocks lead to clays in which the phosphate is moved from 
apatite into the clay complex. It is both tightly bound into the clay lattice in place of 
hydroxyl ions and more reversibly bound by electrostatic attraction to aluminium or iron 
ions. The atmosphere naturally contains few minerals of importance to aquatic systems 
other than those derived from nitrogen gas. The main source of nitrogen for all 
biological activity on this planet is the atmospheric reservoir of gaseous nitrogen, which 
is made available to organisms by fixation into a variety of oxides or reduction to 
ammonium. These events occur as a result of electrical or photochemical processes in 
the atmosphere but the major pathway is fixation by microorganisms in the soil, which 
is about seven times greater than nitrogen from all atmospheric processes brought to 
Earth by rainfall. 
 
2. Primary sources of materials 
 
Soil erosion processes, including material eroded from the riverbank, from riparian 
areas, from agricultural soils and from deforested mountain slopes, provide the bulk of 
the suspended materials which accumulate in river systems. Of secondary importance 
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are contributions provided by wash-off from urbanized areas, direct effluents produced 
by human activities other than farming (industrial, mining, transport) and autochthonous 
material formed within water bodies (i.e. calcium carbonate precipitation, particulate 
organic matter formation). Anthropogenic particle sources which do not relate to 
agricultural practices, provide the primary origin for most trace metals and Persistent 
Organic Pollutants (POPs). 
 
Under natural, undisturbed, conditions, erosion processes would be concentrated in 
upland, higher gradient, areas. In addition to natural erosion forces associated with 
rivers and glacier movements, infrequent catastrophic events such as floods, avalanches 
and landslides cause the bulk of soil erosion. Much of this material becomes trapped in 
the higher parts of floodplains from where it is slowly mobilized by further infrequent 
high floods. 
 
The largest portion of the particulate load, under the current conditions of 
anthropogenically-accelerated erosion, comes from deforested and inappropriately-
farmed slopes and cultivated floodplain soils. The flushing of the soil surface acts 
selectively and removes a disproportionate amount of fine fractions, rich in nutrients 
and organic matter. The enrichment ratio between the sediment eroded and the original 
soil is usually of the order of 1.2 to 2 times but may be as high as 12 times in fertile 
tropical soils. 
 
The major contributions of material in early storm runoff are provided by rapid 
hydraulic transport pathways, known as macropores―tiny (mm), vertical, preferential 
flow channels, through which surface soil solutions migrate rapidly, avoiding contact 
with the soil profile. Earthworms are primary natural causes of macropores, but many 
agricultural fields are often nowadays tile-drained, a practice that favours water 
percolation through soils leading to macropore development. Extensions of the 
hydrologic network through surface drains, pathways and cattle tracks throughout the 
catchment, constitute additional sources. Thus, subsurface flow often transports 
significant fluxes. Unequivocal evidence for top-soil migration through macropores has 
been demonstrated by means of 137 Cs measurements. Top-soil nutrients become lost 
and cause eutrophication as subsurface flows join with groundwater. Soil type seems to 
be a determinant factor in this process which still needs to be better understood. On the 
other hand overland flow becomes relevant later, following soil saturation which tends 
to be delayed, especially in sandy soils.  
 
3. Materials and the hydrological cycle 
 
All materials enter water as it runs off or through rocks, vegetation and soils, either as 
soluble compounds (ions) or particulate material (usually eroded soil or rock particles). 
The contrast between the P and N cycles (above) illustrate these differences well. The 
quantity of materials depends upon the magnitude of water discharge, which changes 
through a year with changing seasons. In the temperate zones these are winter (colder 
and wetter) or summer (warmer and dryer); in the tropical zones where there may be 
little year-round temperature change, they are rainy and dry seasons. Annual river 
discharge measured at any site thus shows certain regularities, depending upon the 
latitude, altitude and position in the river catchment. This is a more-or-less predictable 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

FRESH SURFACE WATER – Vol. II -Dynamics and Cycling of Materials in River Systems - N. Pacini, D. Harper, L.W.G. Higler 
 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

pattern but with several unpredictable (storm or drought) events. Thus, superimposed on 
the annual sinusoid discharge curve are peaks from storm run-off or troughs from 
extreme dry periods. In smaller streams, these effects can be so great that the annual 
discharge curve is barely recognizable. Figure 1 shows the annual discharge in three 
decades of a small Dutch stream of 25 km and an effective basin of 50 km2.  
 

 
 

Figure. 1. Discharge in the Hierden stream, Netherlands, over three decades 
 
Figure. 2 shows the discharge in two extreme years, 1966 and 1970. It is obvious that 
the total discharge in both is different (an average 0.92 m3 sec-1 in 1966 and 0.49 m3 sec-

1 in 1970).  
 
Particles are transported by running waters in two modes―by rolling/sliding along the 
streambed and suspended in the flow. Little is known about the former―the 
bedload―contribution to particle transport.  
 
In general quantitative bedload estimates are believed to be between 10 and 20% of the 
total annual particle load carried by streams. Particles moving along the streambed 
consist mainly of coarse sands and gravels.  
 
Their relative importance in the dynamics of element transport in streams is minor, due 
to the refractory nature of the elements transported and their slight impact on 
biogeochemical cycles. From a geomorphological point of view, however, bedload 
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contributions are very important in contributing to the structuring of floodplain soils and 
estuaries. Suspended particles are chemically and biologically more important. 
 

 
 

Figure. 2. Discharge in the Hierden stream during two extreme years 
 
In reality, suspended particle transport is discontinuous, as virtually no single particle 
moves directly from the headwaters to the mouth, but rather intermittently, or by 
saltation, by passing through a series of temporary deposition zones within the 
hydrologic network. 
 
The average sediment yield of river basins is highly variable between seasons and 
between different years and is the reflection of a number of erosion controls which are 
specific to climate, basin slope, vegetation and degree of anthropogenic impact. 
 
On the global scale, absolute annual yields vary between 2 t km-2 and over 10,000 t km-

2. The following table shows estimates of material carried by some major world rivers. 
 

River basin Sediment load 
106 t a-1 

Sediment concentration 
mg l-1 

Ganges/Brahmaputra 1,670 1,700 
Amazon 1,100 - 1,300 200 
Yellow River (Huang He) 1,080 23,000 
Mississippi 210 360 

 
Table 1. Sediment concentrations and loads in some of the world’s major rivers 
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