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Summary 
 
This article presents the fundamental theory of fluid flow through closed conduits and 
the engineering applications toward the design and operation of pipeline systems. It 
deals with head losses due to resistance of flow through tubes, valves, and other fittings; 
the optimization of pumping lines and flow networks; and water hammer and pump 
characteristics.  
 
Optimization of pumping pipelines and reservoir sites is carried out by means of a 
spreadsheet program. A bibliography of the relevant publications dealing with the above 
aspects concludes the article. 
 
1. Introduction 
 
Water is conveyed over large and small distances by pipeline for irrigation, hydropower, 
and commercial or domestic use. In a typical water supply system, water is abstracted 
from a source, purified, and pumped to a storage reservoir. From there it is gravitated to 
consumers connected to a reticulation system. The pipeline is the main component in 
most systems. 
 
Some of the older pipe materials are now seldom used, e.g., cast iron, and there are new 
materials, e.g., plastics, glass fiber, and composites. Steel, ductile iron, concrete, and 
fiber cement are used, and some require lining or coatings to ensure durability. The first 
record of the use of pipes leads back to the Chinese, who used bamboo pipes more than 
3000 years ago. At a later stage in history, the Romans used lead pipes in Pompeii and 
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stone pipes in Rome. Thus the idea of closed conduits was conceived, but perhaps not 
fully understood and consequently not fully exploited. 
 

 
 

Figure 1. Hydraulic properties of partly-full circular drains 
 

Early pipelines flowed part-full, the pipeline profile therefore being confined to the 
hydraulic grade line. Even though it is now realized that a pipe flowing partly full, at a 
water depth of about 95% of the diameter, has a larger hydraulic radius than a pipe 
flowing full, and consequently a part-full pipe can theoretically convey a greater flow 
than a full pipe, as shown in Figure 1, it is doubtful whether the ancient engineers 
realized this fact.  
 
The reason for adopting a circular cross section was probably more a practical than a 
technical one. The fact that the circular section has a greater hydraulic radius (cross-
sectional area divided by wetted perimeter) than any other shape, with its resultant 
beneficial effect on friction losses, would also probably not have been understood in 
ancient times. The structural advantage of circular pressurized conduits was probably 
also not realized at the time. A circular-section pressure pipe acts in tension, thus 
optimizing the material properties. 
 
Pipelines are nowadays operated under pressure and flowing full-bore, as thus they 
convey greater flow than a part-full pipe. Sewers and drains, however, are often 
designed to flow part-full and are installed at the level of the hydraulic grade line to 
ensure that there are no dips that could block up. The increased flow when flow depth is 
about 95% full at any gradient, as can be seen in Figure 1, cannot be relied upon 
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because of turbulence and obstructions, which could reduce the discharge capacity of a 
part-full pipe considerably.  
 
Water supply engineers achieved a number of advances in pipeline technology during 
the nineteenth century. The most significant advances have perhaps been made in the 
science of fluid mechanics. Apart from a spate of empirical formulas early in the 
twentieth century, the science of boundary layers and roughness is the one that has 
advanced rapidly. The Darcy-Weisbach formula is gaining acceptance as the most 
reliable method for estimating friction losses (see Fluid Mechanics). 
 
The analysis of unsteady flow in pipelines progressed further with the advent of 
computers. The theory of the water hammer was understood and developed at the 
beginning of the twentieth century, but advances were the most rapid in the last three 
decades of the twentieth century. The accessibility of computers to engineers has also 
facilitated the analysis of complex pipe networks, and the computer-oriented techniques 
of system analysis have been adapted to the optimization of pipe layouts and sizes. 
 
2. The Fundamental Equations of Fluid Flow 
 
The three basic equations in fluid mechanics are the continuity equation, the momentum 
equation, and the energy equation. For steady, incompressible, one-dimensional flow, 
the continuity equation is simply obtained by equating the flow rate at any section to the 
flow rate at another section along the stream tube. By “steady flow” is meant that there 
is no variation in velocity at any point with time. “One-dimensional” flow implies that 
the flow is along a stream tube and there is no lateral flow across the boundaries of 
stream tubes. It also implies that the flow is irrotational. 
 
The momentum equation stems from Newton’s basic law of motion and states that the 
change in momentum flux between two sections equals the sum of the forces on the 
fluid causing the change. For steady, one-dimensional flow, the momentum equation is 
given by: 

)1(xx VQF Δ=Δ ρ  
 
where F is the force, ρ the fluid mass density, Q the volumetric flow rate, V the 
velocity, and  subscript x the “x” direction. 
 
The energy equation is basically derived by equating the work done on an element of 
fluid by gravitational and pressure forces to the change in energy. Mechanical and heat 
energy transfer is excluded from the equation. In most systems, there is energy loss due 
to friction and turbulence, and a term is included in the energy equation to account for 
this. 
 
The resulting energy equation for steady flow of incompressible fluids is termed the 
Bernoulli equation and is written as follows: 
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where 
V = mean velocity at sections 1 and 2 
P/γ = pressure head (units of length) 
V2/2g = velocity head (units of length) 
γ = unit weight of fluid 
g = gravitational acceleration 
Z = elevation above an arbitrary datum 
P  = pressure 
hl = head loss, due to friction or turbulence, between sections 1 and 2 
 
The sum of the velocity head, the pressure head, and the elevation head is termed the 
total head. 
 
Strictly speaking, the velocity head should be multiplied by a coefficient to account for 
the variation in velocity over the cross section of the conduit. The average value of this 
coefficient for turbulent flow is 1.06 and for laminar flow it is 2.0. 
 
For the Bernoulli equation to apply, the flow should be steady, i.e. there should be no 
change with time in the velocity at any point in the conduit. The flow is assumed to be 
one-dimensional and irrotational. The fluid should be incompressible, although the 
equation may also be applied, with reservations, to gases. 
 
3. Flow Head-Loss Relationships 
 
Flow formulas relating head loss to either velocity or discharge have been derived over 
a long period of time, originally based on empirical or experimental concepts, but more 
recently supplanted by rational formulas. These two sets of relationships are now 
examined in more detail in the following section. 
 
3.1. Empirical Flow Formulas 
 
The throughput or discharge capacity of a pipe of fixed dimensions depends on the total 
head difference between the ends. This head is consumed by friction and other (minor) 
losses. 
 
The first friction head-loss/flow relationships were derived from field observations. 
These empirical relationships are still popular in waterworks practice, although more 
rational formulas have been developed. 
 
The head-loss/flow formulas thus established are termed conventional formulas and are 
usually in an exponential form of the following type: 
 

)3(/or mnyx DQKSSRKV ′==  
 
where V is the mean velocity of flow, K and K′ are coefficients, R is the hydraulic radius 
(cross-sectional area of flow divided by the wetted perimeter, and, for a circular pipe 
flowing full, equaling one quarter of the diameter), and S is the hydraulic total-head 
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gradient (in meters of head loss per meter length of pipe), Q is the discharge, D is the 
pipe's internal diameter, and x, y, n, and m are numerical valued exponents. 
 
Some of the equations that are more frequently applied are listed in Table 1 (where the 
Ks, the Cs, n, and λ are numerical coefficients), as presented by Stephenson in Pipeline 
Design for Water Engineers: 
 

Name of Originator(s) Basic equation SI units 
Hazen-Williams S = K1(V/Cw)1.85/D1.167 K1 = 6.84 
Manning S = K2(nV)2/D1.33 K2 = 6.32 
Chezy S = K3(V/Cz)2/D K3 = 13.13 
Darcy-Weisbach S = λV2/2gD Nondimensional 

 
Table 1. Pipe-friction equations 

 
The above equations are not universal, except for the Darcy-Weisbach formula, and the 
form of the equations depends on the units. It should be borne in mind that these 
formulas were derived for normal waterworks practice and take no account of variations 
in gravity, temperature, or type of liquid. They are intended for application to turbulent 
flow in pipes that are more than 50 mm in diameter. The friction coefficients vary with 
pipe diameter, type of interior finish, and the age of the pipe. 
 
The conventional formulas are comparatively simple to use, as they do not involve the 
fluid viscosity. They may be solved directly, as they do not require an initial estimate of 
the Reynolds Number for determining the friction factor, as shown in the next section. 
The rational equations cannot be solved directly for the flow. Solution of the formulas 
for velocity, diameter, or friction-head gradient is a simple matter with the aid of a slide 
rule, calculator, computer, nomograph, or graphs plotted on log-log paper. The 
equations are particularly useful for analyzing flows in pipe networks where the 
flow/head-loss equations have to be iteratively solved many times over. 
 
The most popular flow formula used in waterworks practice is the Hazen-Williams 
formula. If this formula is to be used frequently, its solution with the aid of a chart is the 
most efficient way to proceed. Many waterworks organizations use graphs of head-loss 
gradient plotted against flow for various pipe diameters and various discharge and 
friction-loss coefficients (C, n, and λ values in Table 1). As the value of C, for instance, 
decreases with age, type of pipe, and properties of water, field tests are desirable for a 
more accurate assessment of C. 
 
3.2. Rational Flow Formulas 
 
Although the conventional flow formulas are likely to remain in use for many years, 
more rational formulas are gradually gaining acceptance among engineers. These new 
formulas have a sound scientific basis backed by numerous measurements, and they are 
universally applicable. Any consistent units of measurement may be used, and liquids of 
various viscosities and at different temperatures conform to the proposed formulas. 
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The rational flow formulas for flow in pipes are similar to those for flow past immersed 
bodies or over flat plates, as described by Schlichting. The original research was done 
on small-bore pipes with artificial roughness. Lack of data on roughness for large pipes 
has been one deterrent to the use of these relationships in waterworks practice. 
 
The velocity in a pipe flowing full varies from zero on the internal boundary to a 
maximum in the center. Shear forces on the pipe wall oppose the flow, and a boundary 
layer is established, with each annulus of fluid imparting a shear force onto an inner, 
neighboring concentric annulus. The resistance to relative motion of the fluid is termed 
the kinematic viscosity. In turbulent flow, resistance is imparted by turbulent mixing, 
with the transfer of particles of different momentum between one annular layer and the 
next. A boundary layer is established at the entrance to a conduit, and this layer 
gradually expands with distance along the conduit until it reaches the center (see 
Turbulent Flow Modeling). 
 
The Reynolds Number, Re = VD/ν, is a nondimensional number incorporating the 
fluid's kinematic viscosity, ν, which is absent in the conventional flow formulas. Flow 
in a pipe is laminar for low Re values (less than 2000) and becomes turbulent for higher 
Re values (which is normally the case in water supply practice). The basic head-loss 
equation of Darcy-Weisbach is derived by setting the boundary shear force (over a 
length of the pipe) equal to the loss in the pressure, multiplied by the area (over the 
same length), as given below: 
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where λ = (4τ/γ)/(V2/2g) (referred to as the Darcy friction factor), τ is the shear stress, D 
is the pipe diameter, and hf is the friction head loss over a length, L, of pipe. The friction 
factor, λ, is a function of the value of Re and the relative roughness, e/D, where e is the 
absolute roughness. For laminar flow, Poiseuille found that λ = 64/Re, i.e. λ is 
independent of the relative roughness. Laminar flow will not occur in normal civil-
engineering waterworks practice. The transition zone between laminar and turbulent 
flow is complex and undefined, but is also of little interest in hydraulic engineering 
practice. 
 
Turbulent flow conditions may occur with either a smooth or a rough boundary. The 
equations for the friction factor (for both laminar and turbulent flow conditions) are 
derived from the general equation for the velocity distribution in a turbulent boundary 
layer, which is derived from the mixing-length theory: 
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Integrating the above over the pipe cross section with Von Karman’s constant k = 0.4, 
yields: 
 

)6(/log75.5)/(/ yy ′=ρτν  
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where v is the velocity at a distance y from the boundary, and y′ is the thickness of the 
laminar boundary sublayer. For a hydrodynamically smooth boundary, there is such a 
laminar sublayer, which Nikuradse found to be expressed by the proportionality y′ ∞ 
ν/√τ/ρ, thus resulting in: 
 

/5.75log 5.5
/

v y τ ρ
ντ ρ

= +  (7) 

 
The constant 5.5 was determined experimentally.  
 
where the boundary is rough, the laminar sublayer is affected, and it was established by 
Nikuradse that y′ = e/30 where e is the boundary absolute roughness. Thus 
 

5.75log 8.5
/

v y
eτ ρ

= +  (8) 

 
 
By rearranging Eqs. (7) and (8) and expressing v in terms of the average velocity V by 
means of the equation Q = ∫ vdA, it is obtained that: 

1 2 log Re 0.8λ
λ
= −  (9) 

 
(turbulent boundary layer for  boundary)smooth   
and 

1 2log 1.14D
eλ

= +  (10) 

 
(turbulent boundary layer for  boundary)rough  
 
It is noticed that for a smooth boundary, λ is independent of the relative roughness, e/D, 
and for a very rough boundary, it is independent of the Reynolds Number, Re, for all 
practical purposes. 
 
Colebrook and White combined Eqs. (9) and (10) to produce an equation covering both 
smooth and rough boundaries, as well as the transition zone between these two cases. 
Following the research on turbulence carried out by Reynolds, Von Karman, and other 
investigators, the boundary-layer theory was developed to yield a relationship between 
flow and head loss for turbulent flow conditions in pipes. Colebrook and White fitted an 
equation to the data, yielding the so-called Darcy-Weisbach friction factor λ (for which 
the symbol ƒ is used in the US).  
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In view of the complex relationship existing between the Darcy-Weisbach friction 
factor, λ, the Reynolds Number, Re, and the relative roughness, k/D, explicit head-loss 
charts have been prepared by Ackers at Wallingford. The symbol k used here is a 
measure of the absolute boundary roughness and is the same as e used before in 
Equation (8). 
 
By comparing the Hazen-Williams equation with the Darcy-Weisbach equation, it is 
deduced that 
 

)12()08.054.0 Re/(4.422 λ=wC  
 
The Hazen-Williams coefficient, Cw, is therefore a function of λ and Re, and values may 
be plotted on what is known as a Moody diagram, which is shown in Figure 2. 
 

 
 

Figure 2. Moody resistance diagram for uniform flow in conduits 
 

It will also be observed from Figure 2 that lines for constant Hazen-Williams coefficient 
coincide with the Colebrook-White lines only in the transition zone between partially 
turbulent smooth boundary and completely turbulent rough boundary flow. In the 
completely turbulent zone with a particular pipe, the Hazen-Williams coefficient 
declines with an increasing flow rate, and with increasing roughness. The Hazen-
Williams equation should therefore be used with caution for high Reynolds Numbers 
and rough pipes. It will also be noted that values of Cw above about 155 are impossible 
to be attained in waterworks practice. The corresponding Cw lines fall below the smooth 
line on the Moody diagram. 
 
Table 2 gives a summary of the accepted friction factors for different pipe materials and 
lining conditions. 
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