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Summary 

 

Theoretical background of ozone mass transfer from gas into water has been discussed 

in detail. This discussion is preceded by presenting ozone physical and chemical 

properties. Much attention has been devoted to the methods of the volumetric mass 

transfer coefficients ( Lk a ) as well as the mass transfer coefficients ( Lk ) determination 

and predictions. Special emphasis has been put on listing the more recent references 

presenting experimental data on ozone contactors and designs, aiming at greater 

effectiveness of the transferred ozone. Comparison of ozone contactors performance has 

been made, indicating the major factors that can be considered during final selection of 

the ozonation equipment. In a separate section mass transfer with chemical reactions has 

briefly been described. Simple examples of mass (ozone) balance in ozone contactors 

have been given. Some emphasis has been put on disinfection process carried out using 

ozone. Final section briefly summarizes design principles of ozone contactors. 

 

1. Introduction 

 

Vast majority of the ozone technical applications concerns its activity within the liquid 

phase, and historically the earliest one was the treatment of drinking water. In this case 

it has mainly been used for disinfection purposes and because of its supreme ability in 

inactivation of microorganisms that ozone usage has still remained an important step in 

drinking water treatment. Ozone, when applied in purification of drinking water, allows 

to limit chlorine dose in the final stage of the treatment process thus enabling to meet 
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the regulations for the residual chlorine concentration in the fresh water (< 10 g/L) as 

well as to reduce generation of harmful chloroorganic compounds – disinfection by-

products – DBPs, e.g. such as trihalomethanes (THM). On the other hand ozone 

dissolved in the treated raw water may undergo numerous chemical reactions that could 

lead to other undesired by-products such as bromates. According to the EPA 

regulations, effective since January 1, 2002, the maximum concentration limits (MCL) 

of the most relevant DBPs should be maintained as follows: bromates - 10 g/L; 

chlorites - 1 mg/L; THMs – 80 g/L and haloacetic acids – 10 g/L. This means that 

ozone introduction during the drinking water treatment should carefully be controlled in 

order to eliminate or to reduce DBPs level as much as possible. 

 

Ozone belongs to the strongest oxidants and this chemical property enables to apply it in 

oxidizing toxic or undesired pollutants that are present in different wastewaters. In this 

case ozone may be used as a single oxidant or in combination with other oxidizing 

agents such as hydrogen peroxide or UV irradiation promoting generation of chemically 

very effective hydroxyl radicals. Using the combined oxidizing agents leads to the so-

called advanced oxidation processes (AOPs), discussed in a separate chapter. 

 

In general, since ozone is expected to act within the liquid (mainly aqueous) phase, it 

should effectively be introduced there from the gaseous phase. Hence, ozone transfer 

from the gas phase into the liquid one and dissolution there corresponds to that widely 

known as the absorption process. Therefore, design of ozone transfer from gas into 

water should be discussed based on the principles and rules that govern the effective 

absorption process. Possibly high effectiveness of the ozone absorption process (> 90%) 

is required since ozone generation is accomplished by direct using of electric energy 

(typically corona discharge process) and residual (unabsorbed) ozone must not be 

released to the atmosphere (environmental and health issues). 

 

2. Ozone Properties 

 

2.1. Main Physical and Chemical Properties 

 

Under the normal conditions ozone is a gas of specific odor resembling sulfur dioxide or 

chlorine. At very small concentrations in air its smell is even freshly pleasant; however, 

at higher concentrations its smell is strong and pungent. Ozone is a colorless gas at low 

concentrations and is blue at high concentrations or in the liquid state. Crystals of solid 

ozone are violet. At any state ozone is very sensitive on sudden changes of pressure or 

shakes since they may induce its explosive decomposition. 

 

The molecule of ozone is formed by three atoms of oxygen, O3, shaping an isosceles 

triangle with a top angle equal to 116°49’ and the length of oxygen-oxygen bonds ca. 

128 pm. The structure of the ozone molecule can be described as a resonance hybrid of 

four canonical forms having a bipolar character (cf. Figure 1) 

 

The basic state of the ozone molecule can be treated as a two-radical singlet, however, 

the molecule has electrophilic character since the electrons remain paired maintaining 

continuous dipole character between the limiting structures. 
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Figure 1. Resonance forms of the ozone molecule. 

 

Main ozone physical and chemical properties are listed in Table 1. The temperature 

dependences for some of them are shown in Figures 2 – 5. 

 

Property Value Property Value 

Molecular mass 47.9982 g mol
-1 

Gas density (273 K; 1.01 bar) 

                    (293 K; 1.01 bar) 

2.142 kg m
-3

 

1.996 kg m
-3

 

Normal boiling 

point 

161.2 K Liquid density (90 K) 

                    (161.2 K) 

1574 kg m
-3

 

1352 kg m
-3

 

Melting point 80.7 K Solid density (77.2 K) 1728 kg m
-3

 

Critical 

temperature 

261.05 K Molar heat of vaporization 

(161.2 K) 

13.88 kJ mol
-1 

Critical pressure 55.7 bar Gas heat capacity (273 K) 

                              (293 K) 

38.1 J mol
-1

 K
-1 

39.1 J mol
-1

 K
-1 

Critical density 0.539 kg dm
-3 

Liquid heat capacity (90 - 128 

K) 

90.4 J mol
-1

 K
-1

 

Critical volume 89 cm
3
 mol

-1
 Liquid viscosity (161.2 K) 

(90.2 K) 

0.272 mPa s 

1.56 mPa s 

Critical 

compressibility 

factor 

0.228 Surface tension (77.7 K) 

(90.2 K) 

43.8 mN m
-1

 

38.4 mN m
-1

 

Acentric factor 0.210 Dielectric constant (90.2 K) 4.75 

Redox potential 

(298 K, pH=0) 

2.07 V Dipole momentum of gas 0.58 D 

Extinction 

coefficient 

3300(254 nm) dm
3
 

mol
-1

 cm
-1 

3150(258 nm) dm
3
 

mol
-1

 cm
-1

 

Magnetic properties 

gas 

liquid 

solid 

 

diamagnetic 

paramagnetic 

paramagnetic 

 

Table 1. Selected properties of ozone. 

 

Two sets of ozone diffusivity in water are shown in Figure 5. The more recent ones 

published by Johnson and Davies (1996) most likely are more accurate. The earlier data 

measured by Matrozov et al. (1976) are lower by 23 % when compared with the results 

of Johnson and Davies (1996). The commonly applied Wilke and Chang correlation is 

plotted in Figure 5 using the molar liquid volume of ozone at the normal boiling point 
3 -1

s 35.52 cm  molV  . In this case the mean error in predicting ozone diffusivity in 

water from the Wilke and Chang correlation equals 6 % for the temperature range of 10 

to 50°C. For comparison an approximation of the data on oxygen diffusivity in water is 
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also plotted in this figure. It is interesting that the ratio of diffusivities of these species 

in water decreases with increasing temperature. The ratio 
3 2 2 2 2 2O -H O O -H O/D D changes from 

0.795 at 20°C to 0.706 at 50°C. 

 

 
 

Figure 2. Dependence of ozone saturated vapor pressure on temperature. 

 

 
 

Figure 3. Dependence of ozone molar density on temperature. 
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Figure 4. Dependence of ozone enthalpy of vaporization on temperature. 

 

 
 

Figure 5. Dependence of ozone molecular diffusivity in water on temperature. 

 

More detailed discussion on ozone solubility in liquids and its decomposition in natural 

waters is presented in the next two paragraphs. 

 

2.2. Ozone Solubility in Liquids 

 

The data on solubility of gases in liquids are of great theoretical and practical interest. In 

modeling processes that involve dissolution (absorption) of gases in liquids such data 

are of primary importance. In general, gas solubility in liquids represents a special case 

of the phase equilibria between the gas and liquid phases where the gaseous component 

is either above its critical temperature or has a vapor pressure above 1.013 bar at the 

system temperature. The other component will exist as a liquid and is referred to as 

solvent. There are different ways in expressing gas solubility in liquids. Those derived 
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from the Henry’s law and most frequently applicable are as follows (subscript A 

denotes a species being absorbed or desorbed): 
 

A A Ap He x  (1) 

 

A A LAp He C  (2) 

 

GA A LA LA

1
C H C C

S
   (3) 

 

Interrelations among these definitions of gas solubility are available elsewhere (Biń, 

2006). 

 

More recent compilation of the available data on ozone solubility in liquids has been 

published by Biń (2006). Most of them refer to water and aqueous solutions of 

inorganic compounds (salts and acids). Very little information can be found on ozone 

solubility in organic liquids (solvents). Typically, the data due to different authors are 

very scattered and differ considerably when compared each other. The reasons of such a 

situation on one hand can be attributed to ozone decomposition in the aqueous 

environment, and on the other – to the applied experimental techniques as well as to the 

experimental data treatment. Published experimental data on the dimensionless Henry’s 

law constant vs. temperature are presented in Figure 6. 
 

 
 

Figure 6. Dependence of the dimensionless Henry’s law constant on temperature in the 

system ozone-water. 
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In aqueous solutions containing salts under the same conditions (temperature, ozone 

partial pressure) ozone solubility will be lowered compared to that observed in “pure” 

solvent (water), in accord to the familiar “salting-out effect”. In practice this effect can 

be quantified by means of the Sechenov expression commonly applied for electrolyte 

solutions of low concentration: 
 

el 0
s s

0 el

log log i i

n

H
K C h I

H





   
     

   
  (4) 

 

The expression contains ion-specific salting-out constants ( ih ) while salt concentration 

is accounted for by the ionic strength if the individual ion i  ( iI ). More detailed 

information on the salting-out effect on ozone solubility in aqueous solutions can be 

found elsewhere (Biń, 2006). 

 

2.3. Ozone Decomposition in Natural Waters 
 

Ozone spontaneously decomposes in aqueous environment by a complex mechanism 

that involves generation of free radicals of which hydroxyl radicals play a key role. In 

general in aqueous solutions ozone can react by either direct mode (involving molecular 

ozone) or by indirect mode involving chain radical reactions leading to the oxidation 

products of the substrates present in the water. The direct reaction of aqueous ozone is 

relatively slow while the reactions with hydroxyl radicals are very fast. Much research 

effort has been devoted in studying ozone decomposition mechanism in the aqueous 

environment. From the experimental investigations two major models have been 

suggested: the SBH model developed by the Swiss authors (Staehelin and Hoigné, 

1982; Bühler et al., 1984; Staehelin et al., 1984; Staehelin and Hoigné, 1985) and the 

TFG model (Tomiyasu et al., 1985). In both these models complex free radical chain 

reactions have been assumed, with the following steps taken into account: initiation, 

propagation and termination. The models differ mainly in details at the initiation step 

and in propagation step by the assumed presence of the radicals 3HO
 and 4HO

 as well 

as in reactions with the ozonide radical 3O
 treated as a chain transmitter in the radical 

reactions. 

 

Based on the assumed possible mechanisms a theoretical (mechanistic) approach of 

ozone decay in the waters has been attempted by some authors with rather limited 

success (cf. for example Viridis, 1995; Westerhoff et al., 1997; Nemes et al., 2000; 

Beltrán, 2004; Kumar and Bose, 2004, Tiwari and Bose, 2006). This is mainly caused 

by the fact that it is quite difficult to establish a possibly complete set of the relevant 

reactions and to know or to estimate the necessary kinetics rate constants. Typically a 

large number of reactions should be taken into account and the resulting stiff set of 

differential equations is difficult for solving. A solution is eventually obtained by 

comparing it and/or fitting to the experimental data (decay curves). Following the 

developing experimental technique mechanistic models of ozone decomposition are 

continuously modified and improved (cf. papers by Bezbarua and Reckhow, 2004; 

Buffle et al., 2006; Kim et al., 2007b). 
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In natural waters which contain a variety of chemical compounds ozone will react with 

the various organic (e.g., NOM – natural organic matter) or inorganic (e.g., Fe
2+

, Mn
2+

) 

species resulting in further decomposition and formation of secondary oxidants (e.g., 

HO ). 

 

Ozone demands are associated with a number of factors such as: 

 Reactions with NOM (oxidation of NOM leads to formation aldehydes, organic 

acids, and aldo- and ketoacids. 

 Organic oxidation byproducts. As a result they can become more biodegradable 

giving rise to BDOC (biodegradable dissolved carbon) or AOC (assimilable organic 

carbon). 

 Synthetic organic compounds (SOC) which can eventually be oxidized or even 

mineralized under favorable conditions. Organic compounds (pollutants) such as 

phenols, pesticides, polyaromatic hydrocarbons (PAH), pharmaceuticals etc. belong 

to this category. 

 Oxidation of bromide ion resulting in formation of hypobromous acid, hypobromite 

ion, bromate ion, brominated organics and bromamines. 

 Bicarbonate or carbonate ions (measured as alkalinity) which will scavenge the 

hydroxyl radicals and form carbonate radicals. 

 

The decay of ozone in natural waters is characterized by a fast initial decrease of ozone 

concentration in the liquid phase (frequently called instantaneous ozone demand), 

followed by a second stage in which ozone concentration decrease can be approximated 

by the first-order kinetics (Park et al., 2001; Von Gunten, 2003; Gujer and von Gunten, 

2003). The half-life of ozone depends on the water quality and may range from seconds 

to hours. The stability of aqueous ozone depends on the water matrix, especially on its 

pH, the type of NOM and on its alkalinity (Hoigné, 1998). 

 

For practical purposes the global kinetics of ozone decay in the aqueous environment 

has been approximated with different expressions. The following two are among the 

most frequently quoted: 

 

 
 3

3

d O
O OH

d

mn

Ak


      (5) 

 

 
   3

A 3 B 3

d O
O OH O

d

mn p
k k



       (6) 

 

The values of the powers exponents depend on pH of the aqueous environment and its 

matrix – first of all on the substances or ions that act as scavengers of free radicals. The 

kinetics constants depend on the temperature and could be approximated by the 

Arrhenius type equations (Hewes and Davison, 1971; Miyahara et al., 1974; Sullivan 

and Roth, 1980; Sotelo et al., 1987; De Smedt, 2000; Hsu et al., 2002). 

 

Quite often the first-order kinetics of ozone decay has been assumed (e.g. Qiu, 1999; 

Chen et al., 2001; Gujer and von Gunten, 2003; Park et al., 2004; Kuosa et al., 2005; 

Rosal et al., 2006; López-López et al. 2007): 
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 
 3

D D 3

d O
O

d
r k


    (7) 

 

while the first-order rate constant, Dk , is dependent upon temperature and pH of the 

water (cf. Figure. 7). In spite significant scatter of the experimental data shown in 

Figure. 7 it can be concluded that for pH < 6 (acidic conditions) the first-order kinetics 

constant of ozone decomposition is of the order of 10
-4

 s
-1

. Hence, under acidic 

conditions (pH < 3) hydroxyl ions will not affect the rate of ozone decomposition and 

Eqs. (5) and (6) will simplify to Eq. (7). 
 

 

 
Figure 7. Dependence of the first-order rate constant of ozone decay, Dk , on pH at (a) 

20°C ; and (b) 25°C; 1) Morioka et al. (1991); 2) Eq. (6) with 

A B3,  0.5, 45,  1k n k m     
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Some authors proposed empirical expressions for the first-order rate constant, Dk , 

describing ozone decomposition in the natural waters (cf. Von Gunten and Laplanche, 

2000). These expressions contain the main water parameters such as pH, TOC, 

alkalinity and UV254. They represent a reasonable approximation for the real natural 

waters and may be used in preliminary designing stage of the ozonation step. 

 

Ozone decomposition in the aqueous environment may depend on the presence of 

specific pollutants. For example, Pi et al. (2005) studied the effect of aromatic solutes 

and concluded that when present at several M concentrations they can strongly 

accelerate ozone decomposition rate. They explained it by formation of the intermediate 

product (hydrogen peroxide) and proposed a new reaction pathway of ozone 

decomposition. 

 

Recently, Mizuno et al. (2007a, b) carried out carefully planned experiments on ozone 

self-decomposition in water within the range of temperatures of 15 to 30°C and pH-

values from 2.7 to 7.8. From their experiments they concluded that ozone self-

decomposition follows the second-order kinetics with respect to dissolved ozone 

concentration and approximated their data with an empirical expression similar to Eq. 

(5) giving the following relationship for Ak and the power exponents in this equation: 

 

 
A

13367 1589 293
37.4exp

293

T
k

T

  
   

  
;  2, and 0.73n m  . 

 

They found that inorganic carbon affects ozone self-decomposition in water. At higher 

concentrations of inorganic carbon the rate of ozone self-decomposition in water 

decreased. The authors explained this by scavenging effects of inorganic species on 

hydroxyl radicals. Furthermore, they developed a radical model of ozone self-

decomposition based on considerations of 22 possible reactions and managed to obtain 

good agreement with their own experimental data within the indicated range of 

temperature and pH values. They concluded that their model should be applicable for 

engineering design of the ozonation process. 

 

From their studies on the effects of temperature, pH, water alkalinity as well as the type 

and concentration of DOC, Elovitz et al. (1999, 2000) introduced a concept of 

ctR parameter which determines a ratio between the concentrations of the hydroxyl 

radicals and ozone in the natural water and is equal to the ratio of hydroxyl and ozone 

doses expressed by the time integrals measured during the batch experiments using 

samples of the water in question. 

 

   
ct

3 3

OH dOH

O O d
R





       



 (8) 

 

The ctR parameter is coupled with a test (probe) ozone resistant-substance concentration 

changes with the experimental time (e.g. p-chlorobenzoic acid) according to the 

following equation 
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 
 

 ct 3OH /pCBA

0

pCBA
ln O d

pCBA
k R 

 
  

 
 

  (9) 

 

If Eq. (9) is fulfilled a linear plot of the experimental data points is expected using the 

coordinates 
 
 

 3

0

pCBA
ln , O d

pCBA


 
 
 
 

 . From the of such a plot a value of the ctR
 

parameter can be found provided the value of the rate constant 
OH /pCBA

k  is known. The 

values of the ctR
 
parameter are typically of the order of 10

-8 
and depend on the 

experimental conditions. The ctR
 
parameter reflects the concentration level of hydroxyl 

radicals in the ozonated water. 

 

Apart of the above briefly discussed effects of different parameters that characterize the 

water matrix other factors may affect the fate (decomposition and/or reaction) of 

dissolved ozone in the liquid phase. Here the following factors can be mentioned: 

 hydrogen peroxide (situation encountered in the AOPs), 

 UV irradiation (situation encountered in the AOPs), 

 presence of catalysts (including solid catalysts → catalytic ozonation), 

 presence of microorganisms (when ozone is applied as disinfectant), 

 solid surfaces (e.g. when ozone is applied to clean solid surfaces → electronic 

manufacturing). 

 

Detailed discussion of all the above listed factors on ozone decomposition is beyond the 

scope of the present chapter. The book of Beltrán (2004) can here be recommended for 

further reading. 

 

- 

- 
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