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Summary 
 
Modern concepts of nuclear reactors cooled with supercritical water are presented 
together with a short history.  The supercritical water-cooled CANDU ((CANada 
Deuterium Uranium) is a registered trademark of AECL) reactor concept is fully 
discussed.  Also, thermophysical properties at critical and supercritical pressures as well 
as heat transfer and hydraulic resistance at these conditions are presented. 
 
1. Introduction 
 
The use of supercritical fluids in different processes is not new and, actually, is not a 
human invention.  Nature has been processing minerals in aqueous solutions at near or 
above the critical point of water for billions of years (Levelt Sengers 2000).  In the late 
1800s, scientists started to use this natural process, called hydrothermal processing in 
their labs for creating various crystals.  During the last 50 – 60 years, this process 
(operating parameters: water pressure from 20 to 200 MPa and temperatures from 300 
to 500ºC), has been widely used in the industrial production of high-quality single 
crystals (mainly gem stones) such as sapphire, tourmaline, quartz, titanium oxide, zircon 
and others (Levelt Sengers 2000). 
 
The first works devoted to the problem of heat transfer at supercritical pressures (SCPs) 
started as early as the 1930s (see reviews by Pioro and Pioro 1997; Hendricks et al. 
1970).   Schmidt and his associates (Schmidt 1960; Schmidt et al. 1946) investigated 
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free convection heat transfer of fluids at the near-critical point with the application to a 
new effective cooling system for turbine blades in jet engines.  They found that the free 
convection heat transfer coefficient at the near-critical state was quite high, and decided 
to use this advantage in single-phase thermosyphons with an intermediate working fluid 
at the near-critical point (Pioro and Pioro 1997). 
 
In the 1950s, the idea of using supercritical water (SCW) appeared to be rather attractive 
for steam generators.  At supercritical pressures, there is no liquid-vapor phase 
transition; therefore, there is no such phenomenon as critical heat flux (CHF) or dryout 
(for supercritical fluid properties, see Appendix 1).  Only within a certain range of 
parameters a deterioration of heat transfer (for details, see Appendix 2) may occur.  The 
objective of operating steam generators at supercritical pressures was to increase the 
total thermal efficiency of a power plant.  Work in this area was mainly done in the 
former USSR and in the USA in the 1950s – 1980s (International Encyclopedia of Heat 
& Mass Transfer 1998). 
 
In general, the total thermal efficiency of a modern power plant with subcritical 
parameters steam generators is about 36 – 38%, but reaches 45 – 50% with supercritical 
parameters, i.e., with water pressure 24 – 26 MPa, is about 45% and higher with ultra 
supercritical parameters.   
 
At the end of the 1950s and the beginning of the 1960s, early studies were conducted to 
investigate the possibility of using supercritical water in nuclear reactors (review by 
Oka 2000; Wright and Patterson 1966; Bishop et al. 1962; Skvortsov and Feinberg 
1961; Marchaterre and Petrick 1960; Supercritical pressure power reactor 1959).  
Several designs of nuclear reactors using supercritical water were developed in the 
USA, Great Britain, France and the USSR.  However, this idea was abandoned for 
almost 30 years with the emergence of Light Water Reactors (LWR’s) and only 
regained interest in the 1990s following LWR’s maturation. 
 
Use of supercritical water in power-plant steam generators is the largest application of a 
fluid at supercritical pressures in industry.  However, other areas exist where 
supercritical fluids are used or will be implemented in the near future, including the 
latest developments of the use of: 
 
• near-critical helium to cool coils of superconducting electromagnets, 

superconducting electronics and power-transmission equipment (Hendricks et al. 
1970); 

• supercritical hydrogen as a fuel for chemical and nuclear rockets (Hendricks et al. 
1970); 

• methane as a coolant and fuel for supersonic transport (Hendricks et al. 1970); 
• liquid hydrocarbon coolants and fuels at supercritical pressures in the cooling 

jackets of liquid rocket engines and in fuel channels of air-breathing engines 
(Altunin et al. 1998; Kalinin et al. 1998, Dreitser 1993, Dreitser et al. 1993); 

• supercritical carbon dioxide as a refrigerant in air-conditioning and refrigerating 
systems (Lorentzen 1994; Lorentzen and Pettersen 1993); 

• a supercritical cycle in the secondary loop for transformation of geothermal energy 
into electricity (Abdulagatov and Alkhasov 1998); 
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• supercritical water oxidation technology (SCWO) for treatment of industrial and 
military wastes (Levelt Sengers 2000; Lee 1997); and 

• supercritical fluids in chemical and pharmaceutical industries in such processes as 
supercritical fluid extraction, supercritical fluid chromatography, polymer 
processing and others (Levelt Sengers 2000). 

 
2. Survey of Concepts of Nuclear Reactors at Supercritical Pressures 
 
2.1 General Considerations 
 
Concepts of nuclear reactors cooled with water at SCPs were studied as early as the 
1950s and 1960s in the USA and Russia.  After a 30-year break, the idea of developing 
nuclear reactors cooled with SCW became attractive as the ultimate development path 
for water-cooling.  Several countries (Canada, Germany, Japan, Korea, Russia, USA 
and others) have started to work in that direction.  However, none of these concepts is 
expected to be implemented in practice before 2015 – 2020. 
 
The main objectives of using SCW in nuclear reactors are: 1) to increase the efficiency 
of modern nuclear power plants (NPP) from 33 – 35% to about 40 – 45%, 2) to decrease 
capital and operational costs and hence decrease electrical energy costs (<<$1000 
US/kW).  Currently, the latest designs of subcritical pressure nuclear reactors, which 
will be prototyped in 10 years or so, are expected to have specific overnight capital cost 
of about $1000 US/kW.   
 
SCW NPPs will have much higher operating parameters compared to modern NPPs’ 
(pressure about 25 MPa and outlet temperature up to 625ºC), and a simplified flow 
circuit, in which steam generators, steam dryers, steam separators, etc., can be 
eliminated.  Also, higher SCW temperatures allow direct thermo-chemical production of 
hydrogen at low cost, due to increased reaction rates.  According to the IAEA (1999), 
the optimum required temperature is about 850ºC and the minimum required 
temperature is around 650 to 700ºC, well within modern materials capability. 
 
Also, future nuclear reactors will have high indexes of fuel usage in terms of thermal 
output per mass of fuel (Kirillov 2000; Alekseev et al. 1989).  Therefore, changing over 
to supercritical pressures increases the thermal output coefficient and decreases the 
consumption of natural uranium.  Due to the considerable reduction in water density in 
the reactor core, it might be possible to develop fast supercritical pressure water-cooled 
reactors with a breeding factor of more than 1 for converting fertile (non-fissionable 
fuel) to fissionable isotopes. 
 
2.2 Design Considerations 
 
The design of SCW nuclear reactors is seen as the natural and ultimate evolution of 
today’s conventional modern reactors.  First, some designs of the modern Pressurized 
Water Reactors (PWRs) work at pressures about 16 MPa, i.e., high pressures.  Second, 
some Boiling Water Reactors (BWRs) are a once-through or a direct-cycle design, i.e., 
steam from nuclear reactor is forwarded directly into a turbine.  Third, some 
experimental reactors use nuclear steam superheaters with outlet steam temperatures 
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well beyond the critical temperature but at pressures below the critical pressure.  And 
fourth, modern supercritical parameters turbines, i.e., pressures about 25 MPa and inlet 
temperatures of about 600ºC, operate successfully at thermal power plants for many 
years.   
 
The SCW reactor concepts therefore follow two main types (for details, see below): the 
use of either (a) a large reactor pressure vessel (RPV) with wall thickness of about 0.5 m 
to contain the reactor core (fuelled) heat source, analogous to conventional PWRs and 
BWRs, or (b) distributed pressure tubes (PT) or channels analogous to conventional 
CANDU and RBMK reactors.  The latter is used to avoid a thick wall vessel.  The 
coolant is usually water, although carbon dioxide has also been considered.  For using a 
thermal neutron spectrum, water is usually used in the core flow, plus either a solid 
moderator using graphite or zirconium hydride, or a liquid heavy water moderator is 
used. 
 
To reduce the severe axial flux tilt due to the large density decrease as the coolant is 
heated, the core flow path can be a re-entrant in the vessel option, coming down 
unheated first and then turning into an upflow; or interlaced or re-entrant in channels 
with flow in opposite directions.  Both options allow the chance to reduce pressure 
boundary temperatures, by partly insulating the pressure-retaining vessel of the channel 
wall using the first pass of the unheated flow.  Typical outlet temperatures are expected 
to be near 600ºC to match turbine inlet needs.  There is also the option of a superheat 
pass (return flow) to further raise outlet temperatures if needed (for example for 
hydrogen production). 
  
The limit on SCW outlet temperature is effectively set by the fuel cladding, since the 
peak clad temperature will be some 20% higher than the average, and the corrosion rates 
much higher.  Estimates of the peak values have been made to establish the margins and 
clad lifetime expected before refueling. 
 
Moreover, one of the unique features of the SCW reactors is the very low coolant mass-
flow rates that are required through the reactor core because of the high thermal 
capacity.  Preliminary calculations showed that the rate can be about eight times less 
than in modern PWRs, significantly reducing the pumping power and costs.  This 
improvement is due to the considerable increase in enthalpy at supercritical conditions, 
which can be about 2000 kJ/kg.  Therefore, tight fuel bundles, which are more 
acceptable in supercritical pressure reactors than in other types of reactors, can be used.  
These tight bundles have a significant pressure drop, which in turn can enhance the 
hydraulic stability of the flow. Since the SCW is a single-phase “gas”, then the cladding 
surfaces can and should be finned or ridged to enhance turbulence levels to give 
increase in heat transfer coefficient.  This is done for Advanced Gas-Cooled Reactors 
(AGRs) today, and hence will increase the heat transfer and reduce peak cladding 
temperatures in normal operation. To optimize thermal efficiency and capital cost, there 
are also options for the thermal cycles (Bushby et al. 2000; Oka et al. 1996), being 
either direct cycle into a SCW turbine, or indirect using a heat exchanger.However, the 
major problem seems to be with the materials reliability and corrosion rates at high 
temperatures, pressures and neutron fluxes within a highly aggressive medium such as 
supercritical water. 
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Parameters Unit SCW 
CANDU 

HPLWR SCLWR-
H 

SCFBR-H SCWR B-500 
SKDI 

ChUWR ChUWFR KP-SKD 

Reference – Bushby et 
al. 2000 

Squarer et al. 
2003 

Yamaji et 
al. 2004 

Oka, 
Koshizuka 

2000 

Bae et al. 
2004; Bae 

2004 

Silin et al. 
1993 

Kuznetsov 
2004 (project 

from 80s) 

Gabaraev 
et al. 2003 

Kuznetsov 
2004 

Country – Canada EU/Japan Japan Korea Russia Russia Russia Russia 
Organization – AECL EU / U of 

Tokyo 
University of Tokyo KAERI / 

Seoul NU 
Kurchatov 
Institute 

RDIPE 
(НИКИЭТ) 

– PT RPV RPV RPV RPV PT PT PT PT Reactor type 
     spectrum – Thermal Thermal Thermal Fast Thermal Thermal Thermal Fast Thermal 

MW 2540 2188 2740 3893 3846 1350 2730 2800 1960 
MW 1140 1000 1217 1728 1700 515 1200 1200 850 

Power thermal 
          electrical 
linear max/ave kW/m  39/24 39/18 39 39/19  38/27  69/34.5 
Thermal eff. % 45 44 44.4 44.4 44 38.1 44 43 (48) 42 
Pressure MPa 25 25 25 25 25 23.5 24.5 25 25 
Tin coolant ºC 350 280 280 280 280 355 270 400 270 
Tout coolant ºC 625 500 530 526 508 380 545 550 545 
Flow rate kg/s 1320 1160 1342 1694 1862 2675 1020  922 
Core height 
     diameter 

m 
m 

 
~4 

4.2 4.2 
3.68 

3.2 
3.28 

3.6 
3.8 

4.2 
2.61 

6 
11.8 

3.5 
11.4 

5 
6.45 

Fuel – UO2/Th UO2 or MOX UO2 MOX UO2 UO2 UC MOX UO2 
Enrichment % wt. 4 <6% ~6.1  5.8 3.5 4.4  6 
Cladding 
material 

– Ni alloy St. st. Ni alloy Ni alloy St. st. Zr alloy / St. 
st. 

St. st. St. st. St. st. 

# of FA  300 121 121 419 157 121 1693 1585 653 
# of FR in FA  43 216/252 300  284 252 10 18 18 
Drod/δw 
Pitch 

mm/mm 
mm 

11.5 and 
13.5 

8 
9.5 

10.2/0.63 12.8 
108 

9.5/0.635 
11.5 

9.1 (Zr), 8.5 
(St. st.) 

12/1 12.8 10/1 

Tmax cladding ºC <850 620 650 620 620 425 630 650 700 
Moderator – D2O H2O H2O H2O ZrH2 H2O Graphite Graphite D2O 

 
Table 1.  Modern concepts of nuclear reactors cooled with supercritical water 
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Continuation of Table 1 
 

Parameters Unit PVWR WWPR-SCP SCWR-US 
Reference – Filippov 

et al. 2003 
Baranaev et 

al. 2004 
Buongiorno, 
MacDonald 

2003 
Country – Russia Russia USA 
Organization – VNIIAM / 

Kurchatov 
Institute 

IPPE 
(ФЭИ) 

US DOE 

– RPV RPV RPV Reactor type 
     spectrum – Thermal Fast Thermal 

MW 3500 3830 3575 
MW 1500 1700 1600 

Power thermal 
          electrical 
linear max/ave kW/m  35/15.8 39/19.2 
Thermal eff. % 43 44 44.8 
Pressure MPa 25 25 25 
Tin coolant ºC 280 280 280 
Tout coolant ºC 550–610 530 500 
Flow rate kg/s 1600 1860 1843 
Core height 
     diameter 

m 
m 

3.5 
2.92 

4.05 
3.38 

4.87 
3.91 

Fuel – UO2 MOX UO2 95% 
Enrichment % wt.   5 
Cladding 
material 

–  Ni alloy TBD 

# of FA  37 241 145 
# of FR in FA   252 300 
Drod/δw 
Pitch 

mm/mm 
mm 

Sphere 1.8 
mm 

10.7/0.55 
12 

10.2/0.63 
11.2 

Tmax cladding ºC 630–730 630  
Moderator – H2O ZrH1.7 H2O 

Explanations to the table: Concepts appear according to the alphabetical order of the country of origin; for 
explanation to acronyms, see Nomenclature. 
 

Table 1.  Modern concepts of nuclear reactors cooled with supercritical water 
 

In summary, the use of SCW in nuclear reactors will, according to the US DOE 
(Roadmap) Generation IV Nuclear Energy Systems Report (2001): 
 
• Significantly increase thermal efficiency up to 40 – 45%; 
• Eliminate steam dryers, steam separators, re-circulation pumps and steam 

generators; 
• Allow the production of hydrogen at SCW NPPs due to high coolant outlet 

temperatures; 
• Decrease reactor coolant pumping power; 
• Reduce frictional losses; 
• Lower containment loadings during Loss Of Coolant Accident (LOCA); and 
• Eliminate dryout. 
 
The latest concepts of SCW nuclear reactors are summarized in Table 1.  Figure 1 
shows the general concept of the pressurized-channel SCW CANDU reactor; and Figure 
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2 shows the schematic of the US pressurized-vessel SCW reactor. 
 
Values of the heat transfer coefficient and sheath temperatures at SCW CANDU reactor 
operating conditions are presented in Section 2.3. 

 

 
 

Figure 1. General concept of the pressurized-channel SCW CANDU reactor: IP – 
intermediate-pressure turbine, and LP – low-pressure turbine. 

 
- 
- 
- 
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