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Summary 

Alkaline water electrolysis has a long history in the chemical industry. Its application 
for energy conversion in the hydrogen energy system is attracting attention, and 
advanced electrolyzers have been developed. The direction of development is towards 
higher efficiency by applying high temperature and high pressure operation. Although 
some successful results have been reported so far, whether this system can be actually 
used or not depends on the development of its competitors, solid polymer electrolyte 
(SPE) water electrolysis or high temperature steam electrolysis (HTE) .  
 
1. Introduction 
 
The principle of water electrolysis is rather simple. Applying direct current to water 
causes electrolysis, splitting water into hydrogen and oxygen through the reaction 
shown in shown in Eqs. 1–3. 
 

- -
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- -
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→ + +   (3) 

 
Through this reaction, two molecules of water are decomposed and hydrogen evolves in 
the cathode. In the anode, oxygen evolves and at the same time one molecule of water is 
regenerated. As a result, one molecule of water is decomposed and another molecule of 
water moves to the anode. 
 
In industrial alkaline water electrolysis, 20–40% sodium hydroxide or potassium 
hydroxide aqueous solution is used for electrolyte instead of pure water, since pure 
water is highly resistive to electricity. 
 
Er, the reversible potential (equilibrium potential, namely theoretical voltage of 
electrolysis) is given by following equation. 
 

r 0
0

RT PE = E ln
2F P

−  (4)    

 
where E0 is standard equilibrium potential, R is gas constant, T is absolute temperature, 
P0 and P are vapor pressure of pure water and electrolyte respectively. E0 is given by 
Δ Go/2F, Δ Go is increment of Gibbs free energy and F is Faraday constant (96519.4 
coulomb), which is 1.226 V under 298 K and 1 atm. This is slightly higher than the 
decomposition voltage of pure water under the same condition. Electricity required to 
produce 1 N m3 of hydrogen is, from Faraday's law, 2393 Ah (Ampere hours). As this 
reaction proceeds almost quantitatively, the minimum energy required is 2.94 kWh for 1 
cubic meter of hydrogen. Since Er is theoretical equilibrium potential, actual cell voltage 
needed to continue the reaction is higher with the addition of ohmic loss of electrolyte 
and diaphragm and overvoltage (overpotential) by electrode reaction. 
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Actual cell voltage E is calculated according to the following equation. 
 
E = Er + Eir + Eohm  (5) 
 
where E is electrolysis voltage (cell voltage), Er is reversible potential (reversible 
voltage, theoretical voltage of electrolysis), Eir is overvoltage (overpotential), and Eohm 
is ohmic loss. 
 
Reversible potential is theoretically decided according to the reaction condition, but 
overvoltage and ohmic loss vary with activity of electrodes and cell design. Overvoltage 
is loss due to “resistance” by the chemical reaction rate. To drive the chemical reaction 
of electrolysis, extra energy is required in addition to the reversible potential which 
corresponds to a zero reaction rate. In water electrolysis, overvoltage is decided by the 
reaction rate at the electrodes. Therefore electrodes with highly active electrocatalysts 
can reduce the overvoltage. Ohmic loss is mainly caused by electric resistance of 
electrolyte, which can be reduced by shortening the distance between anode and 
cathode. Ohmic loss is also caused by electric resistance of circuitry. Both overvoltage 
and ohmic loss increase with the increasing current density (current per unit area of 
electrode), hence increase of cell voltage and, therefore, increase of electric power to 
make hydrogen. 
 
The water electrolyzers currently used in industry work at a cell voltage of 1.8–2.2 volts 
corresponding to 4.3–5.3 kWh per N m3 hydrogen. “N” stand for  “normal condition”  
that means the volume at 0oC and 1atm. pressure. 

 

Figure 1. Distribution of cell voltage. 
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Figure 1 shows an example of distribution of cell voltage to its component. 
 
The enthalpy change, ΔH , to electrolyze water is shown as follows:  
 
ΔH = ΔG + TΔS   (6) 
 
The decomposition reaction of water by electrolysis is an endothermic reaction, where 
energy corresponding to ΔG  must be supplied in the form of electricity and the rest, 
TΔS, by heat. Cell voltage corresponding to ΔG  is reversible voltage, about 1.2 V, and 
T SΔ , heat absorption potential, about 0.28 V. In actual electrolysis, cell voltage is 
higher than reversible potential and the difference is converted into heat. Since the 
reaction is endothermic, heat thus caused is absorbed by the reaction until total cell 
voltage exceeds 1.48 V, the sum of reversible voltage and heat absorption potential.  
 
At this cell voltage, all heat generated by overvoltage and ohmic loss is used by the 
reaction and there is no heat generation or absorption to and from outside of the system. 
Therefore, this voltage is called “thermoneutral voltage” where all electric energy used 
for electrolysis is converted into heat content of evolved hydrogen gas. This voltage is 
used for the standard of 100% efficiency. Since current efficiency is almost 100% in 
water electrolysis, dividing 1.48 by cell voltage gives energy efficiency of electrolysis.  
 
No electrolysis is possible at cell voltage under reversible voltage, but it is possible, at 
least theoretically, to electrolyze water under thermoneutral voltage. High temperature 
steam electrolysis uses this principle and by supplying part of the energy with heat, it 
reduces cell voltage. As for alkaline water electrolysis, it is not practical to expect an 
electrolyzer to work below the thermoneutral voltage.  
 
The thermoneutral voltage is very important in designing electrolyzers, since all 
electricity supplied beyond this point is converted into heat, which must be removed to 
maintain the temperature of cells. It is desirable to design the heat balance of 
electrolyzers so that the heat generated at the operating cell voltage is equal to the heat 
loss at the operating temperature. Figure 2 shows the change of these voltages versus 
temperature.  
 
The reversible voltage decreases with increased temperature, but thermoneutral voltage 
does not show much change, since this corresponds to the energy of hydrogen 
generated.  
 
The energy efficiency of a water electrolyzer is defined as the quotient of higher heat 
value of generated hydrogen by electric energy supplied to the system. Since electric 
energy is proportional to voltage under a constant current, the efficiency is calculated 
from cell voltage as mentioned before.  
 
In water electrolysis, the current efficiency is usually very high, more than 95%, and 
therefore the energy efficiency is almost equal to the voltage efficiency. 
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Figure 2. Change of cell voltage by temperature. 

 
2. Structure of Alkaline Water Electrolyzers 
 
There are two kinds of electrolyzer, unipolar and bipolar. These names come from the 
electrochemical function of the electrode in each type, and the two types are different in 
structure. 
 
- 
- 
- 
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