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1. Introduction 
 
The twenty-first century has been predicted to be the “age of light,” and, in anticipation 
of this, we have been interested in light-related chemical phenomena, that is, using light 
to induce chemical and electrochemical reactions. We have focused our main attention 
on reactions that might be useful for maintaining our environment, including hydrogen 
production, carbon dioxide reduction, and the destruction of pollutants. This article will 
focus principally on hydrogen production, due to the increasing interest in hydrogen as a 
clean energy storage medium.  
 
The total amount of solar energy impinging on the earth’s surface in one year is about 3 
× 1024 J, or approximately 104 times the worldwide yearly consumption of energy. The 
search for the efficient conversion of solar energy into other useful forms is, in view of 
the increasing anxiety over the exhaustion of fossil energy resources and attendant 
global warming, one of the most important challenges for future research and 
technology development.  
 
In systems designed for the purpose of converting solar energy into electricity and/or 
chemicals, two principal criteria must be met. The first is absorption, by some chemical 
substance, of solar illumination, leading to the creation of electrons and holes. The 
second is the effective separation of these electron–hole pairs with little energetic loss, 
before they lose their input energy through recombination.  
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Living plants effectively capture solar energy, which enables them to grow. During this 
process, they produce oxygen by oxidizing water and organic material by reducing 
carbon dioxide. In other words, they achieve the oxidation of water and the reduction of 
carbon dioxide by means of solar energy. Following the model of natural 
photosynthesis, we began to investigate the photoelectrolysis of water using light 
energy.  
 
Photo-induced charge separation can proceed effectively if an electric field (potential 
gradient) is established at the position where the primary photoexcitation takes place. In 
general, a potential gradient can be produced at an interface between two different 
substances or phases.  
 
For example, a very thin (approximately 50 Å) lipid membrane separating two aqueous 
solutions inside the chloroplasts of green plants is believed to play an essential role in 
the process of photosynthesis, which is one of the most remarkable solar energy 
conversion systems in existence.  
 
Another well-known example is the solar photovoltaic (PV) cell, in which the 
photogenerated electron–hole pairs are driven efficiently in opposite directions by an 
electric field existing at the boundary between n- and p-type semiconductors or at that 
between a semiconductor and a metal (Schottky junction).  
 
A potential gradient can also be created at the interface between a semiconducting 
material and a liquid electrolyte. Hence, if a semiconductor is used as an electrode that 
is connected to another (counter) electrode, photoexcitation of the semiconductor can 
generate electrical work through an external load and simultaneously drive chemical 
(redox) reactions on the surfaces of each electrode.  
 
Similarly, when semiconductor particles are suspended in a liquid solution, excitation of 
the semiconductor can lead to redox processes in the interfacial region around each 
particle, but no electrical work is done, because the oxidation and reduction reactions 
are short-circuited.  
 
These types of systems have drawn the attention of a large number of investigators over 
the past twenty years, primarily in connection with the conversion of solar energy to 
electrical energy and chemically stored energy. During the last five years, the area of 
particulate semiconductors has also seen tremendous growth in terms of photocatalyzed 
air and water purification. 
 
This article deals with the principles and recent advances in the investigation of light 
energy conversion systems based on semiconductor/liquid junctions, focusing on 
hydrogen generation from water. We will also make brief mention of 
photoelectrochemical CO2 reduction and TiO2 photocatalysis, because of their close 
relationships to the main topic. Specific topics covered include the following: 
photoelectrochemical water electrolysis, including the TiO2–Pt system; 
photoelectrochemical photovoltaic systems; photocatalytic water splitting; 
photoelectrochemical reduction of CO2 at p-type semiconductor electrodes; and 
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photocatalytic decomposition of air and/or water pollutants with illuminated 
semiconductors. 
 
2. Photoelectrochemical Approaches 
 
2.1 Basics Aspects of Photoelectrochemistry 
 
When a non-illuminated semiconductor electrode is in contact with an electrolyte 
solution containing a redox couple, equilibration takes place at the interface, just as in 
the case of a Schottky junction, with the Fermi level in the semiconductor shifting to 
match that of the solution redox couple.  
 
This may result in the formation of a space charge layer within a thin region close to the 
surface of the semiconductor, in which the electronic energy bands (valence and 
conduction) are bent upwards or downwards, depending on the relationships between 
the respective Fermi levels in the semiconductor and the solution redox couple (Figure 
1a).  
 
The thickness of the space charge layer is usually of the order of 1–103 nm, depending 
on the carrier density and dielectric constant of the semiconductor. Thus, for an n-type 
material, for example, the electrons in the semiconductor continue to reduce the 
oxidized form of the redox couple, during which time the Fermi level decreases until it 
matches that of the couple.  
 
If the illuminated semiconductor is illuminated by photons with energies greater than 
that of the semiconductor band gap, EG, electron–hole pairs are generated and separated 
in the space charge layer.  
 
In the case of an n-type semiconductor, the electric field existing across the space 
charge layer drives photogenerated holes toward the interfacial region (i.e., solid–liquid) 
and electrons toward the interior of the electrode and from there to the electrical 
connection to the external circuit. On open circuit, as the electrons are driven toward the 
bulk of the semiconductor, they begin to accumulate, which raises the bulk Fermi level 
(Figure 1b).  
 
The latter will continue to rise, depending on the light intensity and recombination rate, 
until a steady state is reached. At this point, one can measure an open circuit voltage 
EOC of the illuminated semiconductor electrode with respect to the counter electrode, 
which is in equilibrium with the redox couple and thus has an electron energy 
corresponding to the couple’s Fermi level.  
 
Naturally, if current is drawn off in an external circuit, there will no longer be as many 
electrons accumulated in the semiconductor, and its Fermi level will fall until a new 
steady state is reached (Figure 1c).  
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Figure 1. Schematic diagram of energy levels for a generic n-type semiconductor in a 
regenerative PEC. (a) Equilibrium, dark conditions and also short circuit, illuminated 
conditions. (b) Open circuit, illuminated conditions. (d) Maximum power conditions. 
(d) Corresponding current–potential curve. The band-bending curves were calculated 

based a carrier density of 1017 cm−3 and a dielectric constant of 8. For the current–
voltage curves, the photocurrent density and the reverse saturation current density were 

assumed to be 20 mA cm−2 and 10−12 A cm−2, respectively. 
 

Note that there is no net change in the amounts of oxidized and reduced forms of the 
redox couple, because exactly the same number of moles of the reduced form are 
oxidized at the semiconductor as there are of the oxidized form that are reduced at the 
counter electrode.  
 
Thus, this type of photoelectrochemical cell (PEC) is referred to as “regenerative.” All 
of these processes are very similar to those occurring in p-n and particularly Schottky 
junction cells and have been discussed in a number of reviews (see Bibliography). 
 
As already mentioned, the operating principles of the PEC are very similar to those of 
the solid-state junction photovoltaic cell. The latter have enjoyed continuous 
development, with the efficiency now reaching over ~24% in laboratory cells, although 
practical wafer-based cells are in the 12–16% range.  
 
One of the driving forces behind the PEC approach is the perceived ability to form 
rectifying junctions in simpler ways compared to the relatively sophisticated techniques 
required in solid-state processing. Another is that barrier height can in principle be 
varied easily by choosing appropriate match-ups between semiconductors and redox 
couples. These types of ideas continue to drive research in this area, and interesting 
results continue to be obtained.  
 
Of course, there are also disadvantages of the PEC approach. For example, the 
manufacturing process is more complicated if there is a liquid electrolyte. For another, 
the liquid can evaporate, or water and oxygen can get in and contaminate the electrolyte. 
For these reasons, there has also been a continuing interest in solid polymer electrolytes. 
 
- 
- 
- 
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