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Summary 
 
A brief introduction is given, sketching the historical background and the conceptual 
and technical framework for the operation of energy stores and their interactions with 
the associated energy systems. This is followed by a qualitative discussion of the 
underlying thermodynamic concepts. 
 
As the number of different types of stores, the number of available working media, and 
the number of different types of associated energy systems are extremely high, it is not 
possible to develop a general mathematical framework to cover every possible 
combination. 
 
The presentation will rather be limited to the most important aspects of the optimization, 
establishment, and operation of a limited number of energy storage/energy systems 
constellations and these will be exemplified through illustrations of practical situations. 
The illustrations have been chosen with the express purpose of introducing the most 
important ideas that govern the establishment and operation of energy storage systems 
and their thermodynamic and economic performance. The illustrations demonstrate that 
very important and often decisive results can be obtained by applying conceptually and 
computationally simple methods. 
 
The examples will also serve to illustrate the basic ideas that are physical and economic, 
and thus can also form the basis for the more extensive computerized mathematical 
models. The results and gains of the application of advanced models are indicated, when 
known. 
 
The examples will underscore the fact that although the thermodynamic losses of a 
given store are important, it is the characteristics of the energy system with which it is 
designed to interact and the price structure of the surrounding society that play the 
decisive roles in determining whether the introduction of energy storage is an attractive 
or even acceptable alternative, technically and economically. 
 
1. Introduction 
 
1.1. Background 
 
Passive and active heat storage is as old as the first human settlements. Mechanical 
energy has been stored in the stresses and strains of the bow or catapult. Kinetic energy 
has been stored in flywheels for use in the production of yarn and pottery for thousands 
of years. 
 
However, the identification and designation of the term energy storage is quite recent. 
The concept of energy storage and its quantification is closely related to a deep 
understanding of the laws of nature, in particular the first and second laws of 
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thermodynamic. These were formulated during the nineteenth century, and thus are of 
fairly recent date. 
 
1.2. Storage Mechanisms and their Physical Realization 
 
As already mentioned, mechanical energy can be stored in the stresses and strains of 
mechanical springs. But it can also be stored in compressed gas in cavities in the ground 
or in hydraulic accumulators, which can be regarded as mechanical gas springs (or, 
from a thermodynamic view point, as exergy stores). Mechanical energy can also be 
stored in the kinetic energy of a flywheel or in the potential energy when a given mass 
of water is moved from one reservoir to another at a different altitude. 
 
Electrical energy, that in most respects can be considered to be the equivalent of 
mechanical energy, can be stored in the form of chemical energy in electrical batteries. 
 
Heat can be stored in the form of internal energy in liquids, for example water, in beds 
of rocks and in beds of bricks. But it can also be stored in the form of latent heat of 
liquids, waxes, or metals (alkali). Steam storage, for example, is really the storage of 
hot, high-pressure water. The store is discharged by steam flashing off from the stored 
water. 
 
Designations such as storage of heat, storage of electricity, and storage of brake energy 
are imprecise and some times misleading, and should be used with caution. A few 
examples will make this clear. The consequence of the storage of heat in connection 
with a cogeneration plant is that the generation of electricity can be moved to the most 
favorable time in order to exploit time-dependent pay rates. This is therefore equivalent 
to the storage of electrical energy. And the consequence of compressed-air energy 
storage (CAES), is both the transportation of electric energy from one point in time to 
another and an increase of the production of peaking power. But actually, the 
compressed-air is stored at environmental temperatures and, therefore, does not 
represent storage of energy, but as will be explained in a later section, represents the 
storage of the ability to deliver work. This ability is reflected in the property exergy or 
(availability). 
 
Finally, a third example is the storage of water at ambient (cold) temperatures from 
winter to a time when it can be used for cooling, or the storage of  water at ambient 
(warm) temperatures, to a time when it can be used for heating. In both cases the energy 
invested is zero, but the transportation in time leads to an increase in exergy and hence 
usefulness. 
 
1.3. Present Status 
 
Today, energy storage is used or considered for use: in transportation in systems for 
comfort heating and cooling, in continuous and discontinuous industrial processes, in 
electric emergency supply systems, and in the electric grid (and the associated district 
heating system). 
 
Specific applications will now be listed: 
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1.3.1. Transportation 
 
The use of electrically battery-driven vehicles will lead to a substitution of gasoline by 
electricity thereby reducing the pollution in densely populated areas. 
 
Batteries are used for starting automobile engines, but can also be used to heat the 
catalyst when starting the automobile, thereby reducing automobile emissions. 
 
Compressed-gas containers, flywheels, or batteries can be used for the recovery of 
braking energy, thereby reducing energy consumption and automobile emission. 
 
Latent-heat (molten-salt) storage can be used as a heat source for heat engines (Stirling, 
steam-Rankine) for propulsion of submarines for offshore inspection and repair. 
 
1.3.2. Comfort Heating and Cooling 
 
Warm- or cold-water stores may be used for heating or cooling of apartment buildings, 
shopping centers, civil-, commercial- and public-office buildings. The source of heat 
and cold could be solar heat and cool groundwater respectively. The objective is to 
establish systems that are superior to the conventional systems with respect to energy, 
environment, and economics. 
 
1.3.3. Heat Recovery in Industrial Processes 
 
In continuous processes such as in electric power plants or in discontinuous process 
such as in brick factories, the recovery of exhaust gas energy is achieved by the use of 
regenerators made of iron or rock. This is a common and economically attractive 
energy-recovery application. 
 
A more challenging application is the use of water tanks for heat recovery when the 
industrial processes are carried out discontinuously, that is, in batches. But it is difficult 
to achieve an acceptable economic balance for industrial batch processes. 
 
1.3.4. Emergency Power Supply 
 
Batteries are used for emergency power supply in hospitals and computer centers. In 
light houses they are recharged by solar cells. These applications are well established. 
Their roles are so important that investment costs are unimportant. 
 
1.3.5. Power Generation 
 
Compressed-Air-Energy Storage (CAES) uses electric generating capacity that is in 
excess at night time. By exploiting low night rates for the compression of air, and using 
the compressed air during peaking periods, very favorable economics may be achieved. 
CAES could also contribute to a shift of fuel from hydrocarbons to hydro electric or 
nuclear. 
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Pumped-hydro storage is very similar to compressed-air storage, except that the 
possibilities of affecting a fuel shift are limited by economics to a shift between nuclear 
and hydroelectric power. 
 
The use of warm-water tanks allows back-pressure power plants to operate also when 
there is no demand for heat. In order to exploit the high rates of electricity during 
periods of peak demand, the power plant is made to generate electricity when the 
demand for heat is low, by replacing the missing demand with a charging of a heat 
store. Then, during periods of low demand, the power plant is closed down, but the heat 
demand is satisfied by heat from the warm-water tank. 
 
An extraction-turbine power plant is different from the back-pressure turbine mentioned 
above in that the amount of electricity generated is inversely proportional to the amount 
of heat demanded. In this case, the warm-water tank is charged by heating the water 
using extraction steam from the turbine. When the amount of steam extracted is 
reduced, by closing the bleeds from the turbine, the electric power generation is 
increased, while the heat to the consumer is satisfied by delivery from the warm-water 
tank. 
 
2. Thermodynamic Considerations. Energy and Exergy (Availability) 
 
In this section a few concepts and ideas from macroscopic thermodynamics that are 
central to energy storage will be presented. 
 
To start with, it should be noted that energy has meaning only in the presence of 
differences. The kinetic energy of an automobile that moves in a specified direction and 
speed relative to a reference frame can be calculated. If the reference frame moves with 
the car, this energy is zero. Likewise, it is possible to calculate the thermal internal 
energy of a system that has a temperature different from a chosen reference temperature. 
If this reference temperature equals the temperature of the environment and the 
temperature of the system equals this, the internal energy is zero. However, if this 
system is insulated and the contents stored until the temperature of the environment has 
changed, the internal energy relative to the new environmental temperature will take on 
a value that is different from zero and this difference can be exploited used for either 
heating or cooling. 
 
It should also be noted here that work is the most easily convertible form of energy in 
that it can be converted to other forms of energy in full, but the reverse is not always the 
case. Kinetic and potential energies are equivalent to work, while, for example, thermal 
internal energy and heat are not. Kinetic and potential energies and work are, therefore, 
quite a bit simpler to handle than thermal internal energy and heat. Thus the first and 
second laws of thermodynamics pronounce that a heat engine can only produce work if 
there are at least one heat source and one heat sink and that these are at different 
temperatures. Furthermore, from the second law it is possible to prove that if this engine 
is reversible, the amount of work takes on a unique value, the so-called availability or as 
it is more commonly called today, exergy, which is the maximum amount of work that 
can be produced by the given combination of system and environment. The exergy can 
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also be used as a measure of the value of the energy stored in the thermal energy store, 
thus serving as some sort of gold standard. 
 
For the specific case of a quantity of heat Q at a temperature T with an environment at 
TB0 B, the maximum amount of work W that can be obtained is given by  
 

0T T
W Q

T
−

= . (1) 

 
Likewise, the maximum amount of work that can be produced by a given amount of gas 
M interacting with the environment is given by 
 

( )p 0 0 p 0 0W MC T T T C ln T / T R ln P / P⎡ ⎤= − − −⎣ ⎦  (2) 

 
where CBp B is the specific heat at constant pressure, R is the gas constant, P is the 
pressure, and PB0 B  is the pressure of the surroundings. 
 
If the change takes place at constant temperature, the work reduces to  
 

0 0W MT R ln P / P=  (3) 
 
Sections 3.2.2 (Hydraulic Accumulator) and 3.5.2 (Compressed-Air Energy Store) are 
two examples of energy storage in which the energy aspect is unimportant. Rather it is 
the storage of ability to produce work is the so-called exergy that is important. (It should 
be noted here, that the Hydraulic Accumulator could also be regarded as a gas spring 
similar to a mechanical spring). In the case of cooling or heating, the exergy represents 
the potential reduction of work required to drive an ideal refrigerator or an ideal heat 
pump. The explanation of the difference of performance of the stratified and of the 
perfectly-mixed stores of sections 3.3.1.1 and 3.3.1.2 can also be traced back to the 
concept of exergy. 
In fact, the performance of the known energy storage techniques would be easier to 
describe and explain if exergy were accepted as the common denominator, rather that 
the energy. 
 
Then the storage of cold from winter to summer, or heat from summer to winter, the 
usefulness of which depends on the change the temperature TB0, Bof the environment, and 
not of that of the store; and the storage of compressed-air energy, that demonstrably 
stores no energy, would both be easier to understand. 
 
Research and development in the area of energy storage tend to focus on the 
conventional losses that represent thermodynamic irreversibilities caused by heat 
conduction, heat transfer, mixing of fluids with different composition and/or 
temperature, flow friction, solid friction, inelastic collisions, electric heating etc. 
 
Component efficiencies are usually defined and formulated in terms of these losses. A 
flywheel may, for example, lose a certain percentage of its stored kinetic energy Δη 
over a certain time period thus offering the possibility of defining an efficiency as η = 
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1.0-Δη. Such losses and efficiencies quite well express the performance of stores that 
store mechanical, chemical, or electrical energy or, in other words, that store exergy. 
 
However, in contexts when the storage is based on differences in temperature, such 
efficiencies may be directly misleading. In such cases a description of the performance 
of the store is incomplete without considering the characteristics of the system in which 
the stores are to operate.  
 
Two simple illustrations of the relationship between heat losses, mixing losses, 
component efficiency and system performance are given in the sections 3.3.1.1 and 
3.3.1.2. that address storage of warm water in cogeneration systems. 
 
3. Cases 
 
3.1. Introductory Remarks 
 
A number of procedures are available for evaluation of the function of energy stores in 
energy systems, their energy saving potential and losses, and their economics. These 
range from simple back-of-the envelope calculations, through paper and pencil 
calculations using dynamic programming, to large computer programs for simulation 
and optimization.  
 
However, the number of different types of energy stores, both what concerns working 
principle and technical implementation, is large. Furthermore, the choice of working 
media, the physical appearance of the store, and the associated energy system can be 
very different from one site to another.  
 
Therefore, it is not possible to develop a general mathematical description. Rather, it is 
necessary to approach each new application, site, and operating conditions individually. 
 
In order to give an introduction to the field, a number of cases will be presented. They 
are expected to cover a reasonable cross-section of the applications to be encountered in 
today’s world. 
The examples will serve to illustrate the basic ideas that are physical and economic, and 
thus can also form the basis for the more extensive computerized mathematical models. 
The results and gains of the application of advanced models are indicated, when known. 
 
These examples will underscore the fact that although the thermodynamic losses of a 
given store are important, it is the characteristics of the energy system with which it is 
designed to interact and the price structure of the surrounding society that play the 
decisive roles in determining whether the introduction of energy storage is an attractive 
or even acceptable alternative, technically and economically. 
 
The cases addressed below are introduced in what is believed to be the order of rising 
conceptual complexity, starting with the simplest, namely the storage of mechanical and 
electrical energy. 
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