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Summary 
 
The forming or loosing of chemical bounds takes place with simultaneous heat release 
or heat consumption. We call this bond energy. By opening the bond this energy is 
“stored” in the “potential bond”, i.e. the reactants, and, consequently, can be released 
again by closing the bond. Thus it can be used for technical heat storage if the reaction 
is not too irreversible. 
 
We will discuss the different processes and materials which can be utilized first from a 
fundamental point of view. We will then see that not only storage of heat is possible but 
also transformation of the temperature of this stored heat, heat pumping, cold 
production, and even storing of work. Finally, some practical examples and an outlook 
for applictions will be given. 
 
1. Basic Considerations and Definitions 
 
1.1. Definition of Bond Energy Storage 
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We define “bond energy” in the scope of heat storage systems as a latent thermal energy 
which is set free in processes which are based on chemical reactions or the like. These 
processes comprise:  
 
• simple reversible chemical reactions of gases 
• chemical reactions of gases which are reversed using several steps 
• solid-gas chemical reactions like calcination 
• forming of complex compounds like ammoniates 
• forming of metal hydrides 
• other kinds of heterogeneous evaporation 
• adsorption of a gas into a solid 
• absorption of a gas into a liquid 
• forming of gas hydrates (clathrates) 
 
It is seen immediately, that in all cases more than one species is involved in the storage 
process. This feature makes the storage of bond energy unique with respect to all other 
forms of heat storage, as, e.g., latent heat storage of phase change materials.  
 
Still, the case of storage of latent heat of phase change is very similar to the storage of bond 
energy. There are two equations to describe the effect in the case of latent heat storage, 
which are: 
 
A (1st phase) ←  A (2nd phase)  +  ΔH (heat consumed due to melting or evaporation) 
A (1st phase)  →  A (2nd phase)  +  ΔH (heat released due to solidification or condensation) 
 
In the case of bond energy we can formulate for the two different species A and B (see 
Figure 1): 
 
A + B  ←  A B  +  ΔH (heat consumed, decomposition) 
A + B  →  A B  +  ΔH (heat released, synthesis) 
 
The reaction may or may not feature an additional phase change. Due to the fact that at 
least two different species have to be involved, there arises the possibility to separate the 
two partners after the storing (heat consuming) reaction.  
 
Thus the release of heat which would be caused by the reversion of the reaction (synthesis) 
is made impossible, which is an important distinction from all other forms of energy 
storage. The heat release can be controlled totally arbitrarily.  
 
The only problem is that the separation has to be accomplished in a technically feasible 
way, or that the reverse reaction is kinetically blocked and can be controlled via catalysis. 
Both ways are being considered.  
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Figure 1: Principle of heat storage (a: one partner B localized, b: all partners flowing)  
Proceeding further on the path we laid out above, we discuss under the term of bond energy 
all heat storage systems which involve two or more separate working media in such a way 
that these working media are being combined in order to release heat and are separated by 
consuming heat, thus bringing forth the storing effect.  
 
The two reactions are not governed by external parameters like the temperature alone but 
are controlled by the user. Two cases are shown in Figure 1: In the first case (a) the reacting 
partner B is localized and the other reacting partner A is extracted from the reactor when 
loading the store and brought into the reactor when the stored heat is released. This is a 
typical arrangement for partner B being a solid. In the second case (b) the reactor is a kind 
of heat exchanger which is passed continuously by the reactants when in operation. In the 
loading phase the combined partners flow into the system but they leave the reactor 
separated or are being separated afterwards.  
 
In the heat release phase both partners enter the reactor and leave it combined. Case b will 
be typical for fluid media. Of course, the separation is more easily accomplished if the state 
of partners A and B is different, e.g., A being a gas and B being a liquid or solid. 

 
1.2. Scale of the Energetic Effect 
 
In Table 1 the order of magnitude of the energy which is related to different effects which 
may be used for heat storage is compared and tabulated in rising order (ref. Alefeld, 
1975a).  
 
The different kinds of bond energy as classified here, beginning with heterogeneous 
evaporation, range in the order of phase change energy and above. 
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Physical effect Related energy Remark 

Sensible Heat 3 R ΔT 
ΔT: temperature swing 
between max. loading temp. 
and min. unloading temp. 

Melting 1.1 R Tm to 4.5 R Tm Tm: melting temperature 

Vaporizing 9 R Tv to 13 R Tv 
Tv: boiling temperature 
at 1 bar 

Heterogenous evaporation 15 R Tv to 18 R Tv 
Tv: boiling temperature  
at 1 bar 

Simple chemical bond 50 R T to 220 R T T: room temperature 
Double bond 70 R T to 290 R T T: room temperature 
Triple bond 370 R T to 430 R T T: room temperature 

 
Table 1: Energetic comparison of different physical effects (R is the gas constant) 

 
Medium Volume related energy density [kJ/ltr] Remark 
Rock 50 Sensible heat, 20K 
Water 84 Sensible heat, 20K 
Ice 330 Latent heat 
Zeolite + steam 500 Sorption* 
Ammonia vapor 806 Latent heat 
CaO + steam 900 Reaction* 
CaO + CO2 2000 Reaction* 
Steam 2165 Latent heat 

 
*: Weight and volume of only the solid partner is being considered. Only the heat effect of the 
reaction and not that of the condensation of the produced vapor (see Fig. 6) is taken into 
account. 
 

Table 2: Comparison of energy density of different storage media 
 
One of the most important parameters for heat storage systems is the volumetric or 
gravimetric energy density, i.e. the amount of heat which can be stored in a given volume 
or at a given weight, respectively. In Table 2, typical storage densities are compared for 
practical systems. Numbers are given for the storage materials solely, because the densities 
of the systems depend on the design to a large extent. Only condensed matter is being 
considered. 
 
From the table it can be concluded that in technical terms of energy density storing of bond 
energy is similar to storing latent heat of evaporation. However, the given numbers are 
theoretical limits for the energy density only; one of the most important challenges is to 
design a system in such a way that in addition to the energy density the power density is 
large also.  
 
In this respect, great care has to be given to the heat conductivity of the materials and the 
heat transfer coefficients in the total system. The theoretical preference to storing bond 
energy in many cases is overcompensated by technical problems. It has to be recalled that a 
high power density can always be achieved when large temperature gradients are being 
applied. Consequently, this aspect is much more dependent on the system design than on 
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the storage materials which are being used.  
 
2. Heat Storage and Heat Transformation 
 
One of the most interesting features of heat storage using bond energy as compared to 
other physical effects is the inherent possibility for heat transformation. Heat 
transformation means shifting a given amount of heat from one temperature to another.  
 
A heat exchanger does this in an irreversible way, from high temperature to low. A heat 
pump lifts heat from low temperature to high temperature and, in the limiting case, may 
perform a reversible heat transformation.  
 
This is not totally different from the case of phase change energy, because the respective 
two reactions do not have to take place at the same temperature. Nevertheless, with two 
temperature levels alone no reversible transformation is possible without additional work 
input.  
 
However, in the case of using bond energy four different temperature levels can be 
involved as will be explained later. With these four temperature levels, a lot of different 
possibilities for reversible heat transformation exist.  
 
Of course, it is important that the temperature can be influenced easily for the purpose of 
heat transformation. In the case of vaporizing the variation of the phase change temperature 
is very easy to accomplish by changing the vapor pressure. The same holds for most of the 
reactions used for storing bond energy. Examples will be shown below.  
 
In Figure 2 the basic difference between reversible heat storage (a → b) and reversible 
heat transformation (a → c  or  a → d) is depicted. In order to store heat in a reversible 
way the two reactions, decomposition and synthesis, take place under the same 
constraints (e.g., the pressure). 
 
 Just one parameter has to be changed slightly such that the equilibrium is on one or the 
other side of the reaction. Then the heat will be consumed or set free at the same 
temperature, except for small deviations to drive the reaction. In the fully reversible 
case, these deviations tend to zero. This is shown in Figure 2a (loading) and Figure 2b 
(unloading).  
 
If the heat is to be transformed to another temperature, we have to change one of the 
possible constraints. In many cases this will be the pressure because the equilibrium 
temperature is dependent on the pressure as indicated in the figure by the equilibrium 
line.  
 
Then, the unloading may be performed at a higher temperature (Figure 2c) or a lower 
temperature (Figure 2d). Of course, additional energy flows are required both in order 
to accomplish the pressure change and in order to close the entropy balance. In the 
examples, we will see real cases of such kind of heat transformers. 
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Figure 2: Principle of heat storage (a: loading, b: unloading) and heat transformation (a: 

loading, c unloading at higher temperature, d: unloading at lower temperature. 
 
Due to the fact that with the storage of bond energy heat transformation becomes 
possible, we can also envisage the storage of work by bond energy: we can load the 
store with heat but unload it by extracting work in addition or vice versa (see Figure 8). 
This feature is not discussed frequently; a practical example is reported in the chapter 
about absorption systems. 
 
3. Examples of Storage Systems and Applications 
 
There are many rationales to choose a reacting pair for heat storage: temperature and 
pressure range, thermodynamic efficiency (storage efficiency), experience, complexity 
in handling, safety, environmental concerns, and, above all, cost. Very similar 
considerations hold for heat transformation devices. Consequently, at this point the 
discussion of working pairs which are currently applied or under close consideration for 
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heat transformation may be useful, because some systems for heat transformation are 
state of the art whereas the storage of bond energy is not.  
 
Albeit the large number of possibilities, in the heat transformation applications only 
liquid sorption systems and only two working pairs can be considered to be mature state 
of the art: H2O/LiBr for water chillers and NH3/H2O for refrigeration (Ziegler, 1999). In 
the discussion on new pairs, we can distinguish two lines of research: one tries to 
change the characteristics of those well-known pairs. The other line tries to come up 
with new working pairs.  
 
Within the second line, there are two possibilities: first, organic pairs often have been 
proposed. This interest prevails, although on a low level. But it seems to be quite sure 
that organics are a good choice if for any reason the classical pairs do not work in a 
specific application. Today they still do not play a significant part.  
 
A more radical solution is the switch to solid sorbents. Zeolite continuously attracts a 
lot of attention, but Silica-Gel chillers are commercially available. Moreover, the basic 
research seems to be more active in the field of Silica-gel, as well as in the field of 
ammonia salts. All these solid sorption systems may well be applied to storage, because 
they feature an inherent storage capability due to the batch type of process (see below).  
 
In this chapter some of the few examples of pilot applications as well as laboratory 
experiments for storage will be reported on. There will be systems with mere heat 
storage features, systems which feature heat transformation, and systems which 
incorporate the transformation to work also. It has to be repeated, that up to now no 
storage system is commercially available to a significant extent.  
 
- 
- 
- 
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