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Summary 
 
The optimization of energy systems is of crucial importance for a rational use of natural 
and economic resources and for minimizing their adverse effects on the environment. 
Optimizing such systems may be considered at three levels: synthesis (configuration), 
design (component characteristics), and operation. The first two of these levels are 
examined in this article. After a discussion on the uniqueness of the solution and the 
possibility of finding this solution, the principal approaches and methods for solving the 
optimization problem are described in brief. To clarify the concepts and procedures, two 
application examples on energy systems are presented. 
 
1. Introduction 
 
When the energy needs of a group of consumers of any size (house, city, industrial unit, 
region, and so on) are identified, questions such as the following arise: 
 

 Given the energy needs, what is the best type of energy system to use? 
 What is the best system configuration (components and their interconnections)? 
 What are the best technical characteristics of each component (dimensions, 

material, capacity, performance, etc.)? 
 What are the best flow rates, pressures, and temperatures of the various working 

fluids? 
 What is the best operating point of the system at each instant of time?  

 
The best or “optimum” system is the one that satisfies a criterion of optimality, that is, 
the one that minimizes (or maximizes) an objective function. Examples of objective 
functions are given in Optimization Methods for Energy Systems. In the same article, 
three levels of optimization are identified: (A) synthesis, (B) design, and (C) operation; 
and the complete optimization problem is stated by the following question: What is the 
synthesis of the system, the design characteristics of the components, and the operating 
strategy that lead to an overall optimum? 
 
Level C, which appears when the synthesis and design of a system are given, is 
presented in the article Operation Optimization of Energy Systems. Levels A and B are 
the subject of this article. 
 
2. Discussion on the Uniqueness of the Solution of the Synthesis and Design 
Optimization Problem and on the Possibility of Finding this Solution 
 
In mathematical optimization, the best system is the one that minimizes (or maximizes) 
an objective function. Let us assume that minimization of the total cost is the objective 
and that the optimization problem has a solution; that is, a system has been determined 
that satisfies the objective. Is this indeed the solution sought or must one also compare 
the performance of this system with the performance of other (non-optimal) systems 
based on other points of view, for example, maintainability or environmental effects? 
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There may be cases when such a comparison shows that the “optimal” with respect to 
the cost of the system is not at all good when these other points of view are considered 
(attempts to translate other aspects into cost are made but there may still be aspects that 
cannot be handled in this way). Multi-objective optimization is an attempt to correct 
such deficiencies. However, the solution then depends on subjective weighting factors 
or additional criteria. The point of all this is that the optimal solution may not be unique 
and is “optimal” only in the strict mathematical sense. Thus, even if the design 
procedure can be automated, expert human intervention is needed to evaluate the results 
and reach a final decision. 
 
Another issue is the following. In the usual design process of an energy system, the 
designer uses his or her knowledge and experience to select the type, configuration, and 
technical characteristics of a workable system (that is, a system that is technically 
feasible and satisfies a given set of needs), and then evaluates this system for its 
technical and economic performance and for ways of improving it. If the system 
synthesis (type and configuration) is given, the decisions to be taken are of a rather 
quantitative nature. If, however, the synthesis is not given, then in addition to 
quantitative decisions there is a need for many qualitative decisions, which may be non-
deterministic. In such a case, innovation and creativity play a vital role. Given the 
multitude of energy system types and the variations in each type, one may question 
whether it is ever possible to replace the experienced designer’s mental process with an 
algorithm consisting of a set of formulae and rules. On the other hand, in today’s 
complex world, this same multitude of types and variations makes it virtually 
impossible for even an experienced designer to evaluate all possible alternatives. 
Consequently, an automated procedure, if properly used, can be of invaluable help to 
the designer.  
 
Several methods have been developed for the synthesis optimization of processes and 
systems. Some of these are applicable only to particular classes of systems (for instance, 
heat exchanger networks). Other methods are applied to more complex energy systems. 
However, up until now there has been no single method that can tackle the synthesis 
optimization problem in all its generality and completeness. The field is, thus, still open 
to research. In the following sections, a brief introduction to the subject is attempted.  
 
3. Approaches to the Optimal Synthesis of Energy Systems 
 
The various methods that have appeared in the literature on the optimal synthesis of 
energy systems can be classified into three groups: 
 

 Methods based on heuristics and evolutionary search. 
 Methods attempting to reach pre-determined targets, which have been identified 

by application of physical rules. 
 Methods starting with a superstructure, which is reduced to the optimal 

configuration. 
 
In class (a), rules based on engineering experience and on physical concepts (for 
example, exergy) are applied to generate feasible configurations, which are 
subsequently improved by applying a set of evolutionary rules in a systematic way. 
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These rules may come from special techniques, such as exergy analysis. Artificial 
intelligence and expert systems have proven effective in generating appropriate 
configurations. For each acceptable configuration, a figure of merit or performance 
indicator is evaluated (for instance, efficiency, cost, and so on) and the system with the 
best performance is selected. The best of a certain set of configurations, however, does 
not guarantee that the optimal configuration has been revealed, although in most cases 
at least a near-optimal configuration has been obtained.  
 
In class (b), principles from thermodynamics and other physical sciences are applied to 
obtain targets for the optimal system configuration. These targets can correspond to 
upper or lower bounds on the best possible configuration and provide vital information 
for improvement of existing configurations. In addition, many configurations are 
excluded from further investigation, thus reducing the search space for the best system. 
If the physical target is the optimization objective (for example, minimization of energy 
utilization), then these methods provide the solution to the optimization problem. 
However, if the optimization objective is economic (for instance, minimization of the 
total cost), then these methods are not very appropriate. Attempts have been made to 
introduce economics at a second level, but the whole approach is mathematically non-
rigorous and, consequently, the configuration obtained may be non-optimal.  
 
In class (c), a superstructure is considered with all the possible (or necessary) 
components and interconnections. An objective function is specified and the 
optimization problem is formulated. The solution of the optimization problem gives the 
optimal system configuration, which, inevitably, depends on (and is restricted by) the 
initial superstructure. The main advantages of such an approach are that it can work 
with any objective function and that it automatically reveals the optimal system 
configuration. The difficulty with these methods is that the size of the optimization 
problem may be such that the available mathematical optimization algorithms may not 
be capable of a rigorous solution. Thus, the need arises for advances in optimization 
theory and algorithms. It goes without saying that the methods of class (c) can find the 
optimal configuration only out of those represented in the superstructure.  
 
It should be noted that the distinction among the three classes might not be so clear-cut. 
For example, the targets of class (b) can serve as heuristics or rules in class (a) and they 
can be embedded in the optimization procedures of class (c) to the benefit of the whole 
process.  
 
4. Mathematical Statement of the Complete Optimization Problem 
 
The objective function of the complete optimization problem (that is, synthesis, design, 
and operation) is written in the general form: 
 

, ,
min imize F( , , )

x w z
x w z  (1) 

 
subject to the constraints 
 

ih ( ) 0 i  1, 2, , I= =x,w,z …  (2) 
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jg ( , ) 0 j  1, 2, , J≤ =x w, z …  (3) 
 
Where 
 
x set of independent variables for operation optimization (load factors of 
components, mass flow rates, pressures and temperatures of streams, and so on); 
w set of independent variables for design optimization (nominal capacities of 
components, mass flow rates, pressures and temperatures of streams, and so on); 
z set of independent variables for synthesis optimization; there is only one 
variable of this type for each component, indicating whether the component exists in the 
optimal configuration or not; it may be a binary (0 or 1), an integer, or a continuous 
variable such as the rated power of a component, with a zero value indicating the non-
existence of a component in the final configuration;  

( )ih ,x w,z  equality constraint functions (“strong” constraints), which constitute the 
simulation model of the system and are derived by an analysis of the system (energetic, 
exergetic, economic, and so on); and 

( )jg ,x w,z  inequality constraint functions (“weak” constraints) corresponding to design 
and operation limits, state regulations, safety requirements, and so on. 
 
Several objectives pertinent to thermal systems can be written in the form of Eq. (1). 
For example, F can be the fuel consumption, exergy destruction, annualized cost of 
owning and operating the system, lifecycle cost (including environmental considerations, 
if needed), and so on. Multi-objective optimization can also be written in the form of Eq. 
(1), but only if the various objectives are combined into one objective function by 
means of weighting factors.  
 
For a given synthesis (structure) of the system, that is, for given z, the optimization 
problem becomes one of design and operation:  
 

d,
min imize F ( , )

x w
x w  (1) d 

 
Furthermore, if the system is completely specified (both z and w are given), then an 
operation optimization problem is indicated: 
 

opmin imize F ( )
x

x  (1) op 

 
5. Representative Methods for the Solution of the Synthesis Optimization Problem 
 
As mentioned in the introduction, the design optimization problem can be solved by any 
one of the methods described in Optimization Methods for Energy Systems. In this 
section, representative methods for the solution of the synthesis optimization problem 
are described in brief, no matter whether they locate the near-optimum solution (classes 
(a) and (b)) or the optimum one (class (c)) within the constraints and limitations 
mentioned in Section 3. 
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5.1. The Connectivity Matrix Method 
 
This method is a direct application of graph theory to process design. It consists of the 
following steps: 
 

 Create a logical process scheme. This is a very general task and does not imply 
the selection or placement of any component. It entails, though, the selection of 
the chemical/physical subprocesses that constitute the main process. 

 Construct the connectivity matrix (CM) for the logical process scheme. The 
rows of CM represent fluxes of matter or of energy, while the columns represent 
“operations” to be performed on these fluxes. A “1” in position ij signifies that 
flux i undergoes transformation j; a “0” signals no interaction of flux i with 
subprocess j. A logical process scheme and its connectivity matrix are shown in 
Figure 1. 

 “Translate” each operation listed in CM into a series of physical transformations 
and devise one elementary subprocess scheme for each transformation. For 
example, the operation “boiling” is translated into “pressurized, then fed into a 
boiler, then superheated, then throttled, then exhausted.” Introduce these 
subprocess schemes into each one of the applicable columns of CM: this 
corresponds to expanding the matrix by adding several additional columns. 

 Substitute into each transformation in every subprocess the component that 
performs it. Notice that at this point technical and operational constraints may 
come into play and limit or deny altogether the feasibility of a certain solution. 

 The resulting matrix is the connectivity matrix of the real process P. A proper 
quantitative simulation of P must now be performed to obtain the optimal set of 
operational parameters. 

 
 

 
 

Figure 1. A logical process scheme and its connectivity matrix 
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It is apparent that this method is a direct translation of the “mental scheme” a process 
engineer applies to a design task, and it is entirely deterministic. Unfortunately, it is also 
clear that the method is strongly biased by the choices made in points 1 and 3. Choosing 
a process scheme in fact sets a major structural constraint on the resulting process 
configuration, and this step is entirely left to the “experience” of the designer. Similarly, 
splitting a process into subprocesses can be done in more than one way, and selecting 
one or another corresponds to biasing the entire procedure. In spite of its limitations, 
this method has been reported here because it has many similarities with the AI methods 
that will be discussed later. 
 
- 
- 
- 
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