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Summary  
 
Photosynthetic microorganisms, such as microalgae and cyanobacteria, can be used to 
produce high-value pharmacological or nutraceutical products, biomass for human or 
animal consumption, and for liquid or gas waste treatment. All these applications are 
based on the use of solar radiation and the photosynthetic machinery to convert 
inorganic forms of carbon, nitrogen, phosphorous, etc., into organic matter in solar 
photobioreactors, which must fulfill microorganism requirements, especially solar 
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energy, at a minimum cost and with maximum efficiency. This chapter analyzes the 
main factors in the photosynthetic yield of microorganisms and optimized 
photobioreactor design and operation. Finally, industrial applications are reviewed. 
 
1. Introduction 
 
Microalgae are defined as a type of photosynthetic protest able to perform oxygenic 
photosynthesis, that contain chlorophyll a and other photosynthetic pigments. Both 
cyanobacteria with a prokaryotic cell structure, and microalgae, with a eukaryotic cell 
structure are usually included in this category. There are more than 30,000 different 
species catalogued, although only 50 of them have been studied in depth in the 
laboratory, and less than 10 are exploited commercially, thus constituting a practically 
unexplored source of revenues.  
 
These microorganisms are mainly photoautotrophs, although they may also grow under 
mixotrophic or heterotrophic conditions. When illuminated they get the energy for their 
metabolism from light, use water as the terminal electron source, carbon dioxide and 
other oxidized inorganic compounds as biomass substrates, and release oxygen.  
 
Mass production of microalgae began in Germany in the middle of the last century, 
when diatoms were cultured in the laboratory to produce lipids by nitrogen starvation. 
At the same time, studies on the growth of the green algae, Chlorella, a microalgae 
characterized by its fast growth rate under high irradiance, were performed at the 
Carnegie Institution in Washington D.C. These experiments were published in the first 
book in this field, entitled “Algal Culture from Laboratory to Pilot Plant” (Burlew, 
1953).  
 
Analogous studies were also performed in Japan, at the Tokugawa Institute in Tokyo, 
where production of proteins from Chlorella cultures was studied in the laboratory and 
at pilot scale. The yield of these systems was much higher than traditional cultures 
(Tamiya, 1957). Since the seventies, the Chlorella microalga has been commercialized 
for nutritional and dietetic uses in Japan and Taiwan. Today, Taiwan, where six 
companies produce this microalga for human consumption, is the first global producer 
of Chlorella, with more than 50% of the world market. 
 
Microalgae have traditionally been produced as a primary feed in aquaculture for fish 
larvae during the first stage of growth. In juvenile fish, microalgae can be replaced by 
cereals or fish meal, although as this is detrimental to their health, a mixture of 
microalgae and other materials is used. Adult fish are fed with cereals and fish oils as an 
economical substitute for microalgae. On the other hand, shellfish must be fed 
microalgae constantly. Moreover, not all microalgae are suitable for feed, and 
appropriate strains must be selected. 
 
In addition to aquaculture, microalgae also have an enormous potential in the field of 
human nutrition and health, as they produce a wide variety of active functional 
compounds, such as natural antioxidants, pigments, carotenoids, and others, which are 
purified as pharmaceuticals for humans and animals. Some of these compounds are 
anticarcinogenic or antimutagenic, while others have been demonstrated to stimulate the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

SOLAR ENERGY CONVERSION AND PHOTOENERGY SYSTEMS – Vol. I - Photosynthetic Microorganisms and Valuable 
Products - F. G. Acién Fernández, J. M. Fernández Sevilla, and J. A. Sánchez Pérez 

©Encyclopedia of Life Support Systems (EOLSS) 

immune system response, and lower blood pressure and cholesterol. Microalgae are the 
first producers of long-chain polyunsaturated fatty acids, such as docosahexaenoic acid 
(DHA) or eicosapentaenoic acid (EPA).  
 
Commercial eicosapentaenoic acid and its derivates are effective in the treatment and 
prevention of coronary diseases, cholesterol, some types of cancer, and some mental 
disorders.  
 
Finally, the use of microalgae in waste treatment represents a promising technology. 
Microalgae have been used for a long time in wastewater treatment along with bacteria, 
yeast and fungi in activated sludges and oxidation channel-tank technologies. However, 
new processes based on selective microalgae are now being developed.  
 
The cyanobacteria Spirulina platensis is being used for the treatment of pork prunes and 
olive oil waste. Moreover, several strains of microalgae and cyanobacteria are being 
evaluated in the United States, Canada, Japan, Spain, and elsewhere, for their use in the 
mitigation of greenhouse gas emissions. 
 
There are three main tasks in any industrial microalgal application.First, selection of the 
appropriate strain, and its improvement; in this context, genetic techniques which can 
increase productivity over that of wild strains are of great interest. Second, culturing 
conditions, such as light availability, nutrient saturation, pH, temperature, fluid-dynamic 
conditions, etc., must be optimized for the best yield.  
 
Finally, the culture systems in which solar energy is converted to chemical energy must 
be designed to operate at a minimum cost, thus maximizing the overall productivity of 
the system. 
 
2. Factors Affecting Photosynthetic Microorganisms 
 
2.1. Light and Photosynthesis Rate 
 
The most important factor in the growth and productivity of photosynthetic 
microorganism cultures is light availability. The photosynthesis rate of microalgae is a 
direct function of the irradiance to which the cells are exposed. Irradiance is defined as 
the total amount of radiation reaching a point from all directions in space, at every 
wavelength.  
 
However, photosynthetic microorganisms can only make use of the 400 to 700 nm 
range, the photosynthetically active radiation (PAR). Therefore, in the field of 
microalgae, irradiance is usually taken as the total amount of photosynthetically active 
radiation reaching a point from all directions in space.  
 
In microalgal cultures, photosynthesis-irradiance response curves have a hyperbolic 
shape, analogous to those for growth of yeast or bacteria versus substrate concentration, 
although there are some differences (Figure 1).  
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Figure 1. Photosynthesis-irradiance response curve in microalgae. 
 
A minimum irradiance, called compensation irradiance, cI , is necessary to activate 
photosynthesis. Below this value, oxygen consumption by respiration overcomes 
oxygen evolution by photosynthesis. There is also saturation irradiance, sI , above 
which the photosynthesis rate is saturated. At very high irradiances, the photosynthetic 
apparatus can be damaged and the photosynthesis rate decreases. The culture is then 
said to be photoinhibited. This irradiance is called the inhibition irradiance, iI . For most 
microalgae, photosynthesis is saturated at about 30% of the total terrestrial solar 
radiation. Some microalgal species grow best at irradiance values as low as 50 µE/mP

2
Ps, 

but irradiances over 100 µE/mP

2
Ps are usually necessary for most species. Photoinhibition 

appears at irradiances over 1000 µE/mP

2
Ps in most strains, although some sensitive strains 

are photoinhibited at irradiances no higher than 200 µE/mP

2
Ps. The influence of light on 

the growth of any particular strain must be studied in each case. 
 
Many P-I relationships have been found empirically for specific cases (e.g., optically 
dilute culture, specific algae). From these relationships, different growth models have 
been proposed, most of them disregarding the photoinhibition effect (Eqs. (1, 2)).  
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Where μ  is the specific growth rate, maxµ  is the maximum specific growth rate, and kI  
is the irradiance constant or irradiance necessary for half the maximum growth rate 
under specific culture conditions. To take photoinhibition into account, some other 
equations have also been proposed (Eq. (3, 4)), in which iI  is the photoinhibition 
irradiance. 
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μ μ
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         (4) 

 
Otherwise, most of the available P-I models lack generality, apparently because they are 
purely empirical, and do not consider the underlying biochemistry of photosynthesis. 
The kinetic constants of such empirical models are difficult to link to biological cell 
phenomena. Often, the empirical models fail to describe the well-known photoadaptive 
response of photosynthesis. Photoadaptive processes can dramatically modify the 
growth–irradiance relationship (Zonneveld, 1998).  
 
Another important phenomenon that is generally disregarded in P-I models is 
photoinhibition, a decrease in the photosynthesis rate that occurs when the irradiance 
exceeds a certain value. Photoinhibition is associated with partial deactivation of key 
components of the photosynthetic apparatus. To complicate matters, the various 
physiological responses to varying intensities of light can be interactive. For example, 
cells adapted to low irradiance are more prone to photoinhibition when transferred to 
intense light. In response to the many limitations of the fixed-parameter empirical (or 
“static”) P-I models, more realistic “dynamic” models of photosynthesis have been 
developed.  
 
Dynamic models typically break photosynthesis down into single steps, including at 
least one photochemical energy-collection step and a metabolic consumption step. 
Differential equations are used to model these steps. Additional steps can be included to 
account for adaptive responses (Eilers and Peeters, 1988; Zonneveld, 1998). Although 
dynamic photosynthesis models available do consider photoinhibition and 
photoadaptation, none of these models are sufficiently general. Existing models do not 
simultaneously account for photoadaptive responses (photoacclimation), 
photoinhibition, and the well-documented phenomenon known as the “flashing light 
effect” (Terry, 1986).  
 
As demonstrated by the flashing light effect, illumination of the microalgal culture need 
not be continuous for cell growth; growth can be promoted quite efficiently by 
intermittent or “flashing” light of the same intensity as the continuous light. The 
flashing light effect is of considerable importance in designing photobioreactors for 
algal culture, because commercially viable culture systems must operate at high cell 
densities and, therefore, a photobioreactor necessarily contains an illuminated outer 
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zone and a darker core. The movement of fluid between the illuminated zone and the 
dark interior unavoidably subjects the cells to fluctuating illumination. 
 
2.2. Average Irradiance 
 
Even when incident radiation is constant, the irradiance within a culture varies as a 
function of position. Cells nearer the light-receiving surface are exposed to higher 
irradiance than cells elsewhere in the vessel. Cells closer to the light source shade those 
further away, so productivity varies with position and time. Mean irradiance may be 
defined as the average of local irradiance values inside a culture. The average 
irradiance, avI , is the amount of light received by a single cell moving randomly inside 
the culture (Molina et al., 1994).  
 
In a cell-free system, average irradiance is independent of the state of mixing. When 
cells are distributed homogeneously under given conditions, the average irradiance is 
again the same for all cells; however, average irradiance is not a sufficient criterion of 
culture performance, because it considers only the total length of dark and light periods, 
and not the switching frequency.  
 
Ignoring cell dynamics for the moment, the average irradiance inside the culture 
depends on the following factors: the external irradiance on the surface of the reactor, 
I Bo B; reactor geometry; cell concentration and morphology; cell pigmentation and its 
absorption characteristics. 
 
An additional complicating factor, generally specific to outdoor cultures, is the cyclic 
changes in irradiance to which they are subject. There are at least two cycles with 
substantially different timing: (i) a relatively long daily cycle; and (ii) an even longer 
seasonal cycle.  
 
A third cycle is due to fluid movement between different illumination zones inside the 
photobioreactor. Cycles (i) and (ii) affect only incident radiation on the photobioreactor 
surface, but beyond that factor these cycles are unlikely to have any other impact on 
culture kinetics. Cycle (ii) is much longer than the cell residence time in the continuous-
culture photobioreactor. 
 
Due to the diurnal cycle, a culture is light-limited at dawn and dusk; however, during 
the midday-peak light period, when peak light may exceed 2000 µE/mP

2
Ps, which is 

several times higher than saturation, the culture may be photoinhibited. When external 
irradiance varies over time, average irradiance is determined by time-averaging over 
short intervals. 
 
Average illumination estimation methods consist of: (i) estimating the total incident 
photosynthetically active radiation on the photobioreactor surface; (ii) determining the 
radiation at any depth inside the culture by the Beer–Lambert law, as a function of cell 
concentration and cell pigment light absorption characteristics; and (iii) integrating local 
values over the total culture volume. While there are rigorous solutions for specific 
geometries and photobioreactors, a simplified model has also been proposed: 
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( )( )0
av a b

b

1 exp
a

II K pC
K pC

= −        (5) 

 
where aK  is the biomass extinction coefficient, p  is the optical light path and bC  is the 
culture biomass concentration. In continuous microalgal cultures as commonly 
practiced, biomass productivity, bP , is a function of cell concentration, bC , in the 
effluent and the dilution rate, D , defined as the flow rate of liquid entering the reactor, 
Q  to the reactor volume, V , ratio: 
 

QD
V

=           (6) 

 
b bP DC=           (7) 

 
In steady state, the dilution rate is equal to the specific growth rate, μ , which is 
governed by the amount of light, the rate controlling factor. The dependence of μ  on 
the average irradiance has been expressed in various equations.  
 
One of the most widely used is the one proposed by Molina et al., (1994). Studies 
suggest that growth models that express μ  in terms of the average irradiance raised to a 
power greater than one fit experimental observations best. 
 

max av

k av

n

n n

I
I I
μμ =
+

          (8) 

 
However, this equation does not consider the existence of photoinhibition, especially in 
outdoor cultures when the irradiance on the reactor surface is over 2000 μE/mP

2
Ps. The 

following equation has been proposed to include it (Acién et al., 1998). 
 

0

0

0
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=
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       (9) 

 
Where a , b , and c  are empirical parameters, and kI  and iI  are the irradiance constant 
and photoinhibition irradiance, respectively. This equation accounts for photoinhibition 
and the fact that dependence of μ  on average irradiance varies with incident irradiance, 

0I .  
 
This equation was derived from outdoor cultures of Phaeodactylum tricornutum UTEX 
640 (Acién et al., 1998). Simulations using this model fit experimental values from two 
years of continuous operation (Figure 2). 
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Figure 2. Variation of biomass productivity throughout the year for chemostat cultures 
of P. tricornutum UTEX 640 in tubular photobioreactors. Data estimated from solar 

radiation models and the proposed growth model (Eq. (9)). A) Tubular photobioreactor 
with a 0.06 m tube diameter, B) Tubular photobioreactor with a 0.03 m tube diameter. 
Solid line is the mean daily photosynthetic irradiance on the reactor surface (Acién et 

al., 1998). 
 
To summarize, the biomass productivity of cultures is a function of the average 
irradiance the cells are exposed to in them, and their yield is determined by the 
existence of photolimitation-photoinhibition. Apart from that, for maximum yield, the 
photoreactor must be operated to provide adequate culture conditions (nutrients, 
temperature, pH, etc.). Mixing must also be sufficient to enhance the light regime, but 
excessive high-power agitation could damage the cells. 
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