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Summary 
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manuscript, including text, tables, figures and bibliography etc. 
 
1. Introduction 
 
Mathematical modeling is the process of developing a mathematical model of physical 
phenomena in a system of the real world. As defined by Eykhoff (1974), a mathematical 
model is meant by “a representation of the essential aspects of an existing system (or a 
system to be constructed) which presents knowledge of that system in usable form”. In 
petroleum engineering area, mathematical modeling is to use mathematical language to 
describe a hydrocarbon reservoir system associated with the process of flow of fluids 
through subsurface porous media. 
 
Recovery of petroleum hydrocarbons is a process, during which crude oil and/or natural 
gas are continuously extracted from hydrocarbon formations underground or under 
seafloor. This process typically accompanies a series of changes in pressure and hence 
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changes in properties of rock and fluids contained, which can be modeled by a set of 
mathematical equations. Mathematical models are the theoretical foundation for 
optimization of hydrocarbon recovery scheme in oil/gas industry. They mainly include 
the diffusivity equation & analytical solutions, material balance equations, and decline-
curve analysis, and are commonly used for predicting reservoir and production 
performance. 
 
The diffusivity equation is a governing equation for fluid flow in porous media. It is 
most often used to model unsteady-state flow. Its analytical solutions under appropriate 
boundary and initial conditions have wide application in petroleum engineering field in 
addition to forecast production performance. For example, the analytical solutions 
provide the theoretical bases of pressure transient analysis technique, and employing 
analytical solutions is a cost-effective and readily available way to validate numerical 
simulators. Therefore, emphasis will be placed on constructing the diffusivity equation 
and its analytical solutions under corresponding conditions. 
 
The diffusivity equation is a partial differential equation. The fundamental components 
to establish the diffusivity equation include the principle of mass conservation (a 
continuity equation), the law of conservation of momentum (an equation of fluid 
motion) and an equation of state (EOS). For some particular recovery methods, 
additional equations may be required. For example, thermal recovery of a heavy oil 
reservoir is a non-isothermal process, and the principle of energy conservation needs to 
be considered.  
 
2. Mathematical Model of Single-Phase Flow – Slightly Compressible Fluids 
(Liquid) 
 
2.1. Derivation of the Diffusivity Equation 
 
The mathematical model, i.e., the diffusivity equation, is derived based on the 
continuity equation, an equation of fluid motion and an equation of state. 
 
2.1.1. Continuity Equation 
 
The continuity equation is a mathematical representation of the principle of mass 
conservation. We can obtain the continuity equation through either a differential method 
or an integral method. 
 
(a) Differential method 
 
Consider a small parallelepiped element in a porous medium, schematically illustrated 
in Figure 1. The flow of a fluid in the porous medium is along ,  and x y z directions.  
 
The mass balance on the element can be written as 
 

rateonaccumulatimassoutrateflowmassinrateflowmass =−  (1) 
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The x-direction component of the mass flux, mi,xq , into the element at x is  
 

mi,x xq uρ=          (2) 
 
where ρ  is the density of the fluid and xu  is velocity in x direction, respectively.  
 

 
 

Figure 1.  Illustration of parallelepiped element 
 
The x-direction component of the mass flux, mo,xq , out of the element at x x+ Δ  is  
 

mo,
( )x

x x
uq u x
x
ρρ ∂

= + Δ
∂

       (3) 

 
Hence, the difference of mass fluxes into and out of the element in x  direction is  
 

mi, mo,
( )x

x x
uq q x
x
ρ∂

− = − Δ
∂

       (4) 

 
and the difference of mass flow rate in and mass flow rate out of the element in x  
direction can be obtained as 
 

mi, mo,
( )( ) x

x x
uq q y z x y z
x
ρ∂

− Δ Δ = − Δ Δ Δ
∂

     (5) 

 
where yΔ  and zΔ  are the sizes of the element in y direction and z direction, 
respectively.  
 
The y-direction component of the mass flux, mi, yq , into the element at y is  
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mi, y yq uρ=          (6) 
 
where yu  is the fluid velocity in y direction. 
 
The y-direction component of the mass flux, mo,yq , out of the element at y y+ Δ  is  
 

mo,

( )y
y y

u
q u y

y
ρ

ρ
∂

= + Δ
∂

       (7) 

 
Hence, the difference of mass fluxes into and out of the element in y  direction is  
 

mi, mo,

( )y
y y

u
q q y

y
ρ∂

− = − Δ
∂

       (8) 

 
and the difference of mass flow rate in and mass flow rate out of the element in y  
direction can be obtained as 
 

mi, mo,

( )
( ) y

y y

u
q q x z x y z

y
ρ∂

− Δ Δ = − Δ Δ Δ
∂

     (9) 

 
 
The z -direction component of the mass flux, mi,zq , into the element at z is  
 

mi,z zq uρ=          (10) 
 
where zu  is the fluid velocity in z  direction. 
 
The z -direction component of the mass flux, mo,zq , out of the element at z z+ Δ is  
 

mo,
( )z

z z
uq v z
z
ρρ ∂

= + Δ
∂

       (11) 

 
Hence, the difference of mass fluxes into and out of the element in z direction is  
 

mi, mo,
( )z

z z
uq q z
z
ρ∂

− = − Δ
∂

       (12) 

 
and the difference of mass flow rate in and mass flow rate out of the element in z  
direction can be obtained as 
 

mi, mo,
( )( ) z

z z
uq q x y x y z
z
ρ∂

− Δ Δ = − Δ Δ Δ
∂

     (13) 
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Therefore, the left-hand side of Eq. (1), i.e. the total difference of mass flow rate into 
and mass flow rate out of the element in ,  and x y z all directions, is 
 

mi, mo, mi, mo, mi, mo,( ) ( ) ( )

( )( ) ( )
x x y y z z

yx z

q q y z q q x z q q x y

uu u x y z
x y z

ρρ ρ

− Δ Δ + − Δ Δ + − Δ Δ

∂⎡ ⎤∂ ∂
= − + + Δ Δ Δ⎢ ⎥∂ ∂ ∂⎣ ⎦

  (14) 

 
The pore volume in the element is  
 

pV x y zϕ= Δ Δ Δ                    (15) 
 
Therefore, the mass in the element is  
 

zyxm ΔΔΔ= ρφ         (16) 
 
The rate of change in mass with time in the element is given 
 

zyx
tdt

dm
ΔΔΔ

∂
∂

=
)(ρφ         (17) 

 
The right-hand side of Eq. (1), i.e., the rate of mass accumulation in the element, is 
equal to the rate of change in mass with time in Eq. (17). 
 
Combining Eqs. (1), (14) and (17), we have 
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t

zyx
z
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y
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x
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   (18) 

 
By simplifying Eq. (18), the continuity equation is given in the following form. 
 

tz
u

y
u

x
u zyx

∂
∂

−=
∂

∂
+

∂

∂
+

∂
∂ )()()()( ρφρρρ

     (19) 

 
or  
 

t∂
∂

−=•∇
)()( ρφρu         (20) 

 
where ∇  is the del operator used for specifying the divergence of the vector u . 
 
(b) Integral method 
 
Consider an arbitrary volumetric part of a porous medium, schematically illustrated in 
Figure 2. Its entire volume is V (a subset in 3D porous medium) with a surface area 
of S .  
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Figure 2. Arbitrary element in three dimensional space 
 
The mass balance on the volume V  can be written as 
 

ratelossmassoutrateflowmass =      (21) 
 
Take a small element, ds , on the surface. The fluid mass flow rate, mq , out of the 
surface element ( ds ) is 
 

m ( )dq dsρ= •u n         (22) 
 
where n  represents the normal vector of ds  and •u n  stands for the normal component 
of u . 
 
Then the left-hand side of Eq. (21), i.e. the total mass flow rate out of the volume V  can 
be obtained by integration over the entire surface ( S ). 
 

mo ( )
S

q dsρ= •∫∫ u n         (23) 

 
Take a small volume element, dV , anywhere in the volume V . We have the mass of 
fluid in dV  as 
 

dVdm ρφ=          (24) 
 
Then, the total mass of fluid in the volume V  is given by integration over the entire 
volume (V ). 
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∫∫∫=
V

dVm ρφ          (25) 

 
The right-hand side of Eq. (21), i.e. the rate of mass loss out of the volume V , is 
 

∫∫∫ ∂
∂

−=
V

dV
tdt

dm )(ρφ         (26) 

 
Combining Eqs. (21), (23) and (26), then we have 
 

∫∫∫∫∫ ∂
∂

−=•
V

S
dV

t
ds )()( ρφρ nu       (27) 

 
From Gauss’s theorem, the left-hand side of Eq. (27) can be written as  
 

∫∫∫∫∫ •∇=•
V

S
dVds )()( unu ρρ       (28) 

 
Substituting Eq. (28) into Eq. (27), we have 
 

∫∫∫∫∫∫ ∂
∂

−=•∇
VV

dV
t

dV )()( ρφρu       (29) 

 
Assume that the integrands are continuous function in the volume V . As dV  
approaches zero, the two integrands in Eq. (29) must be equal. Therefore, the final form 
of continuity equation is given as 
 

t∂
∂

−=•∇
)()( ρφρu         (30) 

 
Eq. (30) derived from the integral method is exactly the same as the Eq. (20) derived 
from the differential method. 
 
2.1.2. Equation of Motion 
 
In general, the flow of a fluid through a porous medium is modeled by Darcy’s law, 
which is an expression of conservation of momentum. Darcy’s law is named after Henry 
Darcy, a French engineer, who formulated this law based on his experimental results 
(1856). It states that volumetric flow rate is proportional to the gradient of the potential.  
 
Darcy’s law is given by 
 

Φ∇−=
μ
kAq          (31) 
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where q  is volumetric flow rate, k  is permeability of a porous medium, A  is the cross-
sectional area normal to the flow direction and μ  is fluid viscosity. In Eq. (31), ΔΦ  is 
the gradient of flow potential defined as 
 

Zgp ∇+∇=Φ∇ ρ         (32) 
 
where p  is pressure, g  is the gravitational acceleration and Z  is elevation. The del 
operator (∇ ) is used to specify the gradients of Φ , p , and Z  
 
A more general expression of Darcy’s law is given by 
 

Φ∇−=
μ
ku          (33) 

 
Where u  is Darcy’s velocity, defined by volumetric flow rate ( q ) divided by the cross-
sectional area ( A ). Darcy’s velocity is not an actual fluid velocity because it does not 
account for the space taken up by solid particles in a porous medium. The average fluid 
velocity, i.e., interstitial velocity, can be calculated as 
 

φ
uv =          (34) 

 
In Eq. (33), k  becomes the permeability tensor in 3D flow system with the following 
form. 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

kkk
kkk
kkk

k         (35) 

 
Because of symmetry of the permeability tensor (i.e., k12=k21), it has only six 
independent components.  
 
Considering an isotropic reservoir so that components of the permeability tensor are the 
same in all directions and assuming that gravity effects are negligible, we obtain 
 

pk
∇−=

μ
u          (36) 

 
Therefore, components of Darcy’s velocity along the coordinates of the flow system are 
given by 
 

; ;x y z
k p k p k pu u u

x y zμ μ μ
∂ ∂ ∂

= − = − = −
∂ ∂ ∂

     (37) 

 
Darcy’s law is valid for laminar flow.  
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