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Summary 
 
"The Universe is not only queerer than we suppose, it is queerer than we can suppose." 
-J.B.S. Haldane 
 
Although life may not be unique to Earth, and future explorations may yet reveal life 
elsewhere in the universe, life is without question the most awesome and the most 
incomprehensible phenomenon for those who seek to understand it. In order to 
understand the nature of the origin, distribution, and diversity of life on Earth in the past 
and the present, and, in order to predict its future, it is necessary to examine the forces 
that have shaped and influenced life in the past. Life has the capacity of responding and 
adapting to the dynamic environmental and physical forces that have changed both the 
Earth and life over the eons of time. This essay utilizes a paleoperspective approach in 
looking at the extraordinary history and diversity of life on Earth. Topics to be 
discussed will include the origin of life, evolutionary mechanisms and processes, 
biodiversity, and past global crises. 
 
1. Emergence of Life 
 
Notions have always been produced to account for the genesis of life, mind, and social 
order. Charles Darwin theorized that simple life evolved into complex life through a 
series of small beneficial changes which accumulated over time. But, just what is life 
and how did it originate? How did the complexity of life that we see on Earth today 
come into being? While many scientists agree that life had its humble beginnings as 

©Encyclopedia of Life Support Systems (EOLSS) 
 1



EARTH SYSTEM: HISTORY AND NATURAL VARIABILITY – Vol. III - Life on Earth - D.J. Nash, D. Storch 
 

single-celled organisms, various questions still persist as to how these single-celled 
organisms began. See Chapter Origin and Emergence of Life on Earth. 
 
Today, it is an acceptable and basic biological principle that life only can come from 
preexisting life (biogenesis). The geological history of Earth reveals, however, that early 
in the history of Earth, there is no evidence of life as indicated by fossils and, 
furthermore, the evidence indicates that the physical and chemical characteristics of 
early Earth would not have supported life as we understand it today. Excluding an 
"inoculation" of life on Earth from an extraterrestrial source, it must be concluded that 
life on Earth must have originated from the inanimate world. It is a premise accepted by 
most scientists that the origin of life on Earth can be studied by the application of 
scientific methodology to the historical, biological, and geological records, and to 
characterization of living organisms today. Although there are numerous theories and 
hypotheses concerning the origin of life, there is, as yet, no single, unifying theory.  
 
A precise definition of life is fraught with difficulties. Dictionaries and biology 
textbooks fail to provide a satisfactory difference between life and non-life or define 
well what a living organism is. A. G. Cairns-Smith has introduced a good operational 
definition of both organism and life: "An organism is that which can take part in the 
processes of evolution through natural selection. For this it must have a dual 
constitution, namely (i) a store of genetic information… [and] (ii) …phenotype … Life 
is an informal term for the seemingly purposeful quality of evolved organisms. If 
organisms are prerequisites for evolution, 'life' is rather a product of that process." 
Defining life by describing its basic characteristics is also a common practice of 
biologists. Thus, living things, regardless of their amazing variety of shapes and forms, 
share the capacity to reproduce using genetic information, to develop and grow and to 
have the ability to maintain a stable internal environment despite changes in the external 
environment (homeostasis). 
 

 
 

Figure 1. Life is not only the sum of all living forms but the complexity of their 
interactions that include the processes in atmosphere, hydrosphere, and even 

lithosphere. 
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Life also is characterized by specific structures, organization, and functions. Where and 
how did the DNA, RNA, proteins, and enzymes come together to produce living 
organisms? There is not universal agreement as to where life began and many theories 
have been proposed. Did life arrive on Earth from outer space, perhaps a remnant from 
ancient oceans on Mars carried to Earth by an asteroid? Did life originate near 
underwater hot lava vents? Other sources have proposed evaporating lagoons, 
freshwater reservoirs, molten base of glaciers, aerosols, and water, percolated deep 
layers of the crust, and others. It is even conceivable that several different environments 
have contributed to the origin of life. Wherever the location or locations, the single 
common denominator to all theories is the essential precondition of the presence of 
water in a liquid state. 
 

 
 

Figure 2. The Archean and Proterozoic rocks contain numerous microfossils, but 
because only the shapes of the ancient bacteria are preserved we do not properly 

understand their genetic evolution. It resembles the situation when we can guess the 
function of computer only from hardware outlook without any software left. 

 
The earliest record of life on Earth is bacterial fossils found in Precambrian rocks three 
and a half billion years old. These early life forms were single-celled, did not carry out 
photosynthesis and did not have a cell nucleus. These ancient unicellular organisms 
were at first autotrophs metabolizing carbon dioxide or hydrogen sulfide and later 
evolved into photosynthetic organisms and became able to live in other environments. It 
is thought that all subsequent life on Earth descended from these Precambrian creatures. 
Similar features of the genetic code and metabolism have been found in the Archaea, 
bacteria, and eukaryotic organisms. Eukaryotes are organisms which have a nucleus and 
other membrane-bound organelles and include the "higher" organisms such as plants, 
fungi, and animals in contrast to prokaryotes such as the Archaea and blue-green algae, 
which do not have a nucleus or other membrane-bound organelles.  
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The documentation of the evolution and the development of diverse life forms is 
reasonably inferred from the fossil record. Difficult as it may be for a plant or animal to 
be preserved as a fossil, several hundred thousand species already have been described 
and can be used to write a good "history" of life on Earth from the time of its first 
recorded instance. 
 
Filling in the stages between the abiotic world and the first prokaryotic cells presents a 
much more difficult challenge, however. Given the chemicals that are characteristic of 
life today such as RNA, DNA, proteins, and enzymes, how did they originate and come 
together in the correct structures for the necessary functions of life? The chemical 
composition of all living organisms is remarkably similar. How did this come about? 
 
There are different hypotheses to account for the origin of the chemicals that are used to 
serve as the building blocks for life. Most of the theories of the origin of life consider 
the presence of organic carbon as a necessary precondition for the emergence of life and 
that the presence of organic compounds must have preceded the origin of life. It has 
been hypothesized that the oceans contained a mixture of simple organic compounds 
(commonly referred to as a "primeval soup"). A half-century ago, Stanley Miller 
demonstrated that it was relatively easy to synthesize amino acids using gases thought 
to be part of the primeval atmosphere on Earth: methane, hydrogen, and ammonia. 
These gases are chemically inert at room temperatures but, with an input of energy, 
reactions take place. Miller utilized an electric current, reasoning that electrical 
discharges probably were available on the early Earth. His early studies yielded four 
different amino acids and he hypothesized that other chemicals and reactions could take 
place resulting in a chemical evolution leading to the actual origin of life. Subsequent 
experiments yielded additional amino acids as well as other biologically significant 
molecules including simple sugars. On the other hand, computer simulation models 
showed that some structures could proliferate and even evolve toward more complex 
structures whenever some conditions are fulfilled. These necessary conditions include 
the ability to replicate itself, heredity (transmission of information between generations) 
and "mutability" (possibility to randomly change this genetic information). Perhaps, life 
is inevitable given the right conditions.  
 
How the first organic chemicals became organized enough to utilize energy to maintain 
and organize the structures and functions of life, including the vital capacity to 
reproduce the living organism, remain difficult and intriguing questions. The main 
problem concerning the origin of life is that relating to the origin of the genetic code: 
protein molecules cannot be copied and must be synthesized according to information 
stored in DNA, but that operation itself, as well as the replication of DNA, requires 
proteins. DNA cannot be copied without proteins and proteins cannot be synthesized 
without DNA, so how could such a self-supporting system originate? Maybe there was 
originally some structure that was able both to replicate and to catalyze the replication. 
RNA is a likely possibility for filling such a role since it can replicate itself and can 
direct the synthesis of proteins and other biochemicals. It also can act as a catalyst in 
various chemical reactions that transmit genetic information and control the expression 
of genes. RNA, thus, can be regarded as a key immediate precursor to the whole genetic 
machinery. And it also would have preceded DNA in evolution. See Origin and 
Establishment of Life on Earth. 
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