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Summary 
 
The changing patterns of today’s world impose new requirements on many modern 
organizations, ranging from military establishments to agile manufacturing systems and 
commercial enterprises. With the benefits of new information technologies now under 
development, the competition will be won by an organization that can best utilize both 
its resources and its critical information to achieve its goals. This implies the need for 
much greater emphasis on realistic modeling of distributed organizations in which the 
human participants are the focus. 
 
This article provides a selective overview of decision networks performing distributed 
hypothesis testing and command organizations executing specific missions, and 
illustrates the key issues via a series of examples. We begin with the problem of 
modeling a single decision maker (DM) in binary event detection tasks, and show that 
the expertise of an individual DM can be characterized by a relative operating 
characteristic (ROC) curve. Then we consider a distributed version of the event 
detection (hypothesis testing) problem, wherein multiple distributed DMs cooperate as a 
team to reach a final decision. Key findings in this case are that the aggregated 
organizational expertise is operationalized by a team ROC curve, and that the jointly 
optimal decision procedures at each DM are in the form of coupled operating points on 
their individual ROC curves.  
 
Using the distributed detection paradigm, we illustrate the impact of task structure on 
the performance of organizations with different designs. We conclude that the 
architecture of an organization must be matched correctly to its task structure to achieve 
superior performance, leading to the concept of congruence. We elaborate on this 
concept in terms of a trade-off between decision performance and internal 
communication, and develop a method for synthesizing congruent organizational 
structures. This is followed by a discussion on the need to seek a proper balance among 
task scheduling, resource allocation, and decision hierarchy, and the development of a 
methodology for modeling missions and synthesizing the concomitant congruent, robust 
and adaptive organizations. Finally, we conclude with a summary of current results in 
heterarchical and holonic organizations and future research directions. 
 
1. Introduction 
 
The changing patterns of today’s world impose new requirements for many modern 
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organizations, ranging from military establishments to agile manufacturing systems and 
commercial enterprises. With the benefit of new information technologies now under 
development, the competition will be won by an organization will best utilizes both its 
resources and its critical information to achieve its goals. This implies the need for 
much greater emphasis on realistic modeling of distributed organizations in which the 
human participants are the focus. 
 
A key asset of a successful organization is its design: the goals and strategies, the 
underlying expertise, information about the environment, the structuring of task solution 
processes, the assignment of people to positions; in short, the way the organization 
functions. Oftentimes the value of an organizational design is explicitly assessed, as in 
the following example from Mackenzie: 
 

A bank in a Southern US state wanted to acquire another bank; and it had two 
alternative banks in the same city block which could be acquired. Both banks 
had a book value of approximately $ 15,000,000, but one had more market 
value because it was better run and more profitable. The better bank asked 
$30,000,000 and the other asked $18,000,000. Because both operated in the 
same market with the same technology, a premium of $12,000,000 was placed 
on the organizational design of the better bank. 
 

As the above example illustrates, the efficacy and performance of an organization 
depend on its structure, its decision processes, and the task environment. The challenge 
is to develop and validate scientific models that reveal the complex mechanisms of 
interaction among task and organizational structures, strategies, and performance. The 
validated models can then provide guidelines for designing superior organizations. 
 
This article provides a selective overview of decision networks performing distributed 
hypothesis testing (event detection) and command organizations executing specific 
missions. The problem scope and complexity of event detection and mission execution 
often require that the information acquisition, processing, and decision-making 
functions be distributed over a team of decision-making units (agents, sensors, in 
general: DMs), arranged in the form of a decision network or a command organization. 
In distributed event detection, DMs have access to partial observations about the true 
outcome of an uncertain environment. When the available information is distributed 
among the members of an organization, they must cooperate as a team to reach a final 
decision. Generally, DMs have uncertain knowledge about different local events (local 
hypotheses), which are only probabilistically related to the global event (team task, or 
global hypothesis). In the process of team decision making, quantified versions of local 
opinions are transmitted along prearranged communication lines, and individual 
assessments are aggregated into a final team decision. Thus, team expertise is a result of 
coupled individual and team-level processes. In addition, since communication within 
an organization is typically costly (sometimes even restricted), data exchange among 
DMs must be kept to a minimum level. Numerous real-life situations conform to this 
paradigm. Some representative examples include: a naval commander deciding whether 
a contact is hostile or friendly, based on reports from several heterogeneous sensors; an 
emergency manager deciding whether or not to evacuate a town based on hurricane 
forecasts; votes of stock holders deciding on the acquisition of a new business; a 
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physician making a diagnosis based on the results of multiple diagnostic tests. We 
illustrate the key issues of single human and team decision making in the context of 
event detection via a series of examples. 
 
Example 1: Heimann examines the evolution of organizational design of NASA’s 
reliability and quality assurance system for the space shuttle Challenger as a function of 
political pressure either to prevent bad launches (Type I error or false alarms) or to 
increase resource utilization (which results in fewer Type II errors or misses). The true 
expertise of a decision maker in the context of binary decision problems is a collection 
of probabilities of detection (hit) and false alarms ( )fd PP ,  for all possible preferences. 
The locus of ( )fd PP , , whose graphical representation is called a relative operating 
characteristic (ROC) curve, represents the accuracy (reliability) of a DM. As an 
illustrative example of a single decision-making unit, we determine the ROC curve of a 
unit component of Marshall Space Flight Center (MSFC), based on Heimann’s data. 
The MSFC is to decide whether the proper course of action is to launch (or not to 
launch) based on a set of observed data available to the unit. The concepts of Type I and 
Type II errors will be elaborated further in Section 2. 
 
When multiple distributed decision-making units cooperate as a team to reach a final 
decision, the team expertise is a result of coupled individual and team level processes, 
as the following example illustrates. 
 

 
 

Figure 1. Collaborative evaluation of a medical task (Example 2). 
 

Example 2: Oncologists, pathologists, and radiologists frequently decide, as a team, 
whether or not a patient has cancer. Each expert develops a local decision on a 
component problem and these local decisions are aggregated into a global assessment. 
In order to illustrate this team-level decision process, consider the following 
hypothetical medical diagnosis problem of estimating the probability that a patient has 
lung cancer (see Figure 1). A physician ( 0DM ) estimates the probability of this event 
by examining the patient (when the patient first suspects the cancer), and calling for 
additional tests to see whether the blood cells are infected or not. It is known that the 
true state of a blood cell is ultimately determined by its two attributes: 
 
• the amino acid level of the blood, and 
• the spectral level of the DNA nucleus. 
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The cell is infected if and only if the values of both of these attributes are high. The 
physician calls upon two experts in the respective fields ( 1DM  and 2DM ) to decide on 
the amino acid and spectral levels. Because of measurement errors, the results of 
laboratory tests may not be accurate. However, by combining the local decisions of 

1DM  and 2DM  with 0DM ’s own initial hypothesis, the accuracy of diagnosis can 
significantly be improved (Figure 1). The concepts of diagnostic and prognostic tasks 
alluded to in Figure 1 can be viewed as building blocks of a more complex set of tasks. 
A task structure is of diagnostic type if the observable attributes are evaluated to 
determine the non-observable cause, whereas it is of prognostic type if the causes are 
observable and the target event is the effect. 
 
One important feature of this problem is the distributed nature of data processing: 0DM  
aggregates preprocessed information in the form of local estimates of consultant DMs. 
Moreover, each DM determines the true state of a different (local or global) event. The 
key issues in this case are: 
 
• how to make local decisions (e.g., amino acid and spectral level) in the context 

of a global problem (i.e., lung cancer); 
• how to combine local decisions on different events into an overall global 

decision; and 
• how external and internal parameters (such as prior probabilities of events or 

local expertise of DMs) affect the optimal decision strategies. 
 
In this problem, the organizational structure is uniquely determined by the task due to 
the division of (non-overlapping) local expertise of different DMs. A key finding in this 
case is that the aggregated organizational expertise of cooperating DMs is 
operationalized by a team relative operating characteristic (TROC) curve: that is, the 
locus of the detection and false alarm probabilities of the final decision, and that the 
jointly optimal decision procedures at each DM are in the form of coupled operating 
points on their individual ROC curves. 
 
The next example illustrates the need for matching an organizational structure to the 
task environment. 
 
Example 3: An enterprise produces three different products. It has three different 
functional departments: manufacturing, finance, and sales, associated with each product. 
The number of employees is about the same in each department. This enterprise is 
considering the following two binary tasks (see Figure 2): 
 
• Is the company better off switching its employee benefit plan to a new provider 

or not, based on a majority vote of the employees? 
• Can the company afford to pay the usual amount of dividends to shareholders 

at the end of the current fiscal year or not? 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS ENGINEERING AND MANAGEMENT FOR SUSTAINABLE DEVELOPMENT - Vol. II – Decision Networks and 
Command organizations - Pattipati K.R., Meirina C., Pete A., Levchuk G.M., Ruan, S. and Kleinman D.L. 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 2. Non-decomposable and decomposable task graphs of Example 3. ( kjsY  are 
noisy observations of variables mfsjkxkj ,,;3,2,1; == . The variables }{0 kjxXX == , 

}{ 11 jxXX == , }{ 22 jxXX == , }{ 33 jxXX == , and 0321 XXXX =∪∪ ) 
 

It is known from previous experience that at least two of the three products need to meet 
their sales expectations in order to make the payment possible. Furthermore, it is 
assumed that, in order to meet a sales plan, at least two related departments should 
predict trouble-free activity in their respective areas. It is also known from prior 
experience that one department’s problem can be solved by emergency measures. 
 
As we shall see in Section 3, these two tasks are representative of non-decomposable 
and decomposable tasks, respectively. The space of feasible organizational designs in 
this case is not restricted to a single candidate organization, with different organizational 
structures achieving different decision accuracies for each of these two tasks. Thus, the 
proper choice of an organizational structure is contingent upon the specific task 
structure; that is, organizations must be matched to (or congruent with) the task 
environment to achieve superior performance. 
 
The importance of congruent organizational structures in minimizing the amount of 
communication within an organization is illustrated by the following example. 
 
Example 4: In wartime situations, a fast and accurate information exchange is vital for 
ensuring that subunit tasks are carried out in a coordinated manner. Indeed, intelligence 
preparation of the battlefield has become the centerpiece of current intelligence doctrine. 
It comprises the knowledge of the environment (e.g., enemy, terrain, weather), together 
with the integration of this knowledge into an overall assessment of the global situation. 
A special feature of such intelligence problems is that the information originates from a 
variety of sources. Furthermore, each individual subunit contributes to the common 
view by sharing local observations relevant to other subunits, and, at the same time, 
draws upon these observations when developing an appropriate course of action. 
 
Consider the process of how military commanders assess the outcome of an encounter 
with enemy forces. The raw data about the area, such as terrain maps, aerial photos, and 
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satellite pictures, are evaluated to determine the overall mobility measure of the area 
(such as GO, SLOW–GO, or NO–GO). Similarly, current readings of air temperature, 
pressure, and humidity are combined into a weather forecast (e.g., with outcomes: 
SUNNY, RAIN, or SNOW). Confidence estimates of terrain mobility and of the 
weather forecast are then combined into projections on future positions of the friendly 
and the enemy forces (Figure 3). Ultimately, decision alternatives are developed and 
evaluated on the basis of a posteriori probability of the event of interest. 
 

 
 

Figure 3. Joint task-organization graph of Example 4 
 
It is evident that organizational decision making is a multi-level phenomenon 
combining individual information processing activities with a system-level aggregation 
procedure under a specific task environment. This leads to a multi-level optimization 
problem aimed at achieving maximal reliability of an organization for specified 
optimization criteria (in our context, minimal level of communication). The requirement 
of minimal communication (for maximal performance accuracy) is vital in order, for 
example, not to reveal the information to the hostile intelligence sources. Key issues 
related to this problem are: 
 
• the optimal information access structure (who should measure what); 
• the optimal distributed data aggregation procedure (who should compute what); 

and 
• the optimal organizational (communication) structure among DMs (who should 

communicate what and with whom); in short, the optimal organizational 
design. 

 
The concept of congruence can be extended to situations involving resource allocation 
and task execution, as the following example illustrates. 
 
Example 5: A joint group of navy and marine forces is assigned to complete a military 
mission that includes capturing a seaport and airport to allow for the introduction of 
follow-on forces. There are two suitable landing beaches designated “North” and 
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“South,” with a road leading from the North Beach to the seaport, and another road 
leading from the South Beach to the airport. From intelligence sources, the approximate 
concentration of the hostile forces is known, and counter-strikes are anticipated. The 
commander devises a plan for the mission that includes the completion of tasks shown 
in Figure 4. The following eight resource requirements/capabilities are needed to 
execute the mission: AAW (anti-air warfare), ASUW (anti-surface warfare), ASW (anti-
submarine warfare), GASLT (ground assault), FIRE (artillery), ARM (armor), MINE 
(mine clearing), and DES (designation). 
 

 
 

Figure 4. Geographical constraints and mission tasks for Example 5 
 

The congruent organizational design problem in this context is one of finding the 
optimal organizational structure (e.g., decision hierarchy, allocation of resources and 
functions to humans, communication structure) and strategy (allocation of tasks to DMs, 
scheduling task execution, etc.) that allow the organization successfully to complete a 
specific mission in minimum time. We introduce a three-phase iterative optimization 
process that derives an optimized organizational design for a given mission structure 
and organizational constraints. In the first (mission-planning) phase of our design 
process, the optimal allocation of mission tasks to the organization’s platforms (physical 
resources) is determined, to optimize the mission schedule. In the second phase, a three-
way DM–platform–task allocation is derived, to minimize the coordination and 
workload overhead and its impact on the mission schedule. In the third phase, other 
dimensions of organizational structure (e.g., information acquisition and communication 
structures, decision hierarchy) are optimized, to fulfill the design objectives. 
 
A ‘finely-tuned’ organization that is congruent to a specific mission may exhibit brittle 
performance when operating in dynamic and uncertain environments.  Various 
strategies may be utilized to build organizations that account for dynamic and uncertain 
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mission environments. At one extreme, one may construct an organization capable of 
processing a range of expected missions.  At the other extreme, one may build a ‘finely-
tuned’ organization for a specific mission, and allow online structural reconfiguration 
and/or strategy adaptation to cope with unforeseen changes in the mission and/or in the 
organization.  
 
The former (multi-mission) organizations, termed robust, are able to sustain high levels 
of performance in dynamic environments without having to alter their structures. The 
latter organizations, termed adaptive, are able to generate new strategies and/or 
reconfigure their structures to potentially achieve even higher performance.  The 
following example illustrates the motivation for building robust and adaptive 
organizations.   
 
Example 6: Consider the same scenario as in Example 5, but the specifics of the 
mission scenario are assumed to have a great deal of uncertainty.  In addition, 
throughout the course of the mission, various causes (e.g., operational resource failures, 
malfunctioning of a decision node, etc.) may trigger unexpected changes in either the 
mission environment or in organizational constraints.  For concreteness, we consider the 
following mission uncertainties in the scenario of Example 5: 1) measurement errors; 2) 
task precedence errors; 3) unexpected tasks; and 4) DM failures and/or platform 
(resource) failures.  
 
The rest of this article is organized as follows. In Section 2, we consider the problem of 
modeling a single DM in binary event detection tasks. We show that in many respects 
human decision problems are isomorphic to the paradigm of signal detection theory 
(SDT), where the alternatives are classified as events and non-events.  
 
We characterize the expertise of an individual DM by an ROC curve. We then extend 
our discussion to a distributed detection model in Section 3. The impact of task structure 
on the performance of organizations with different designs is illustrated via Example 3, 
comparing the organizational expertise of different organizational designs for the two 
selected task environments.  
 
We conclude that the architecture of an organization must be matched correctly to its 
task structure to achieve superior performance, leading to the concept of structural 
optimality (congruence). We elaborate on this concept in Section 4 in terms of a trade-
off between decision performance and internal communication.  
 
We discuss a method for determining congruent organizational structures by a 
successive decomposition of the task graph, combining results from probability theory 
and graph algorithms. Section 5 looks into a different aspect of the organizational 
design, namely the need to seek a proper balance of task scheduling, resource allocation, 
and decision hierarchy.  
 
Via Example 5, we illustrate our methodology for modeling missions and for 
synthesizing the concomitant optimal organizations. Section 6 extends the 
organizational design methodology to synthesize robust and adaptive organizations.  
Finally, we conclude with a summary of current results in organizational design and 
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future research directions. 
 
- 
- 
- 
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