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Summary 
 
The existing conceptualization of environmental issues, which essentially treats them as 
“overhead” for both society and private firms, is obsolete. If a sustainable economy, 
integrating economic and environmental efficiency, is to be achieved, a new way of 
thinking about environment and economic activity must be developed. This article 
presents an intellectual framework, based on industrial ecology, which represents this 
synthesis. The goal is achieving a sustainable economy through the process of continued 
economic, cultural, and technological evolution. Appropriate policies include those that 
stimulate the development of knowledge necessary to understand sustainability, protect 
natural systems (biosphere, atmosphere, water, and soil), promote the development and 
use of sustainable energy systems, encourage the conservative use of materials, and 
utilize the free market system to satisfy human needs and wants with ever increasing 
environmental and economic efficiency. These policies must be robust enough to be 
beneficial in spite of our limited current knowledge and capabilities, and adaptive 
enough to evolve as we learn more about the environmental consequences of human 
activities. 
 
1. Introduction 

Industrial ecology is the objective, multidisciplinary field which studies the science and 
technology of industrial and economic systems and their linkages with fundamental 
natural systems. In the broader sense, it can incorporate, as well, the normative 
disciplines of anthropology, law, management, and social sciences, in order to 
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objectively understand and define appropriate societal actions to achieve sustainable 
development. In the narrower sense, industrial ecology can be thought of as the science 
of sustainability. 
 
The following treatment spans the broader scope, starting from a discussion of some 
global ecological issues and the implications of various responses to these issues, 
through a brief description of the scope and methods of industrial ecology, leading to 
principles and specific implementation suggestions for policies which should move us 
in the direction of sustainability. 
 
2.  Stewardship of the Earth 
 
2.1 Sustainability within a Closed System 
 
Earth is a physically closed and energetically open system. Sun light enters the system, 
and heat is lost into space, but otherwise our planet does not exchange resources to any 
appreciable extent with the rest of the universe. The enclosed human, animal, plant, and 
micro-organic inhabitants need to live in harmony with each other, satisfying their own 
and each other's needs, without fouling the environment or using everything up such 
that future inhabitants are left wanting. Fortunately, the living systems and the 
environments in which they live can adapt to many perturbations, repairing and 
refreshing themselves when disturbed, and modifying their functional needs through 
adaptation and evolution, as required. Unfortunately, these recovery responses have 
limits and can break down if the perturbation is too great. Currently, the pressures on 
natural systems generated by population growth and economic expansion are powerful 
and accelerating. Willing or not, humanity is thrust into the critical role of stewardship 
over the resources needed for its own future and over many of Earth's treasures. 
 
2.2 Industrial Revolution and Global Perturbations 
 
The Industrial Revolution was a critical point in the evolution of our species. Prior to it, 
while there is evidence that local environmental degradation played a role in the decline 
of local civilizations, habitats, and species, the impact of human activity taken as a 
whole was simply not of sufficient scale to cause global problems. The technologies of 
the Industrial Revolution and the accompanying agricultural revolution, however, 
essentially created a condition of temporarily unlimited resources for the human 
species, which, as is the general rule in population biology, resulted in exponential 
population growth. Predictably, concomitant environmental impacts, which could have 
been assimilated by natural systems at low levels of population and economic activity, 
have caused increasingly significant perturbations of those systems. 
 
2.3 Master Equation 
 
The relationship between human activities and the environment is captured in, and 
critical policy concepts highlighted by, the so-called master equation: 
 

Environmental = Population x Wealth x Environmental Impact 
 Impact Person Unit Wealth 
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According to consensus scientific assessments, the overall environmental impact of 
human activity is exceeding responsible levels. The question is, which of the factors of 
the master equation is accessible and what can we do to control our impact to levels that 
our environment can accommodate? 
 
2.4 Population and Wealth 
 
It is apparent that controlling the first term of the master equation, population growth, 
will be a complex and lengthy process, and that the eventual leveling-off point could be 
as high as ten billion. Fortunately, there is increasing evidence that population growth 
rates decline with a higher standard of living. As regards the second term, it is obvious 
that most people are not willing to reduce their wealth, or desire for more wealth, 
voluntarily, and that people in developing countries want to become as well off as those 
of more fortunate nations.Quality of life” is probably a more appropriate measure for 
this term, but wealth is easier to measure and, for most people at any rate, is roughly 
equivalent to quality of life anyway.  However desirable, any shift to a less materialistic 
quality of life measure for most people, and for society as a whole, is certainly well in 
the future. Accordingly, it must be concluded that, even if the level of environmental 
impact is already unacceptable, growth in population and wealth are strongly positive, 
and will continue to increase their pressures on the environment, at least in the short 
term. 
 
2.5 Technology's Role 
 
The obvious conclusion from the above perspective is that, especially in the short term, 
every effort must be made to reduce the value of the third term of the master equation, if 
continued- even accelerated- growth in environmental impact is to be avoided. 
Importantly, the third term is a technology term. It says that, as a society, we must 
figure out how to produce increasing quality of life at much reduced environmental 
impact per unit of wealth. Restating this conclusion as a policy imperative: 
 

A fundamental goal of environmental and technological policy must be to encourage 
the rapid evolution, and diffusion throughout the global economy, of 
environmentally appropriate technology and technological systems. 

 
3. Emergence of Ecological Perspectives 
 
3.1 Environmental Paradigm of the 1960s to the 1980s 
 
In the always informative light of hindsight, it is apparent that the end of the 1980s 
marked the beginning of a fundamental shift in the way environmental issues were 
conceptualized by both society and private firms. The prevailing paradigm was one that 
dealt with environmental concerns localized in both time and space: individual landfills, 
specific waterways, the airsheds over major metropolitan areas. The focus was on 
individual substances: particular pesticides, lead, polychlorinated biphenyls (PCBs). 
Policy endpoints were ad hoc and limited; most programs were driven by risk 
assessments that focused almost exclusively on acute human toxicity or carcinogenicity. 
Not only regulatory methodologies and tools but also research in environmental science 
was heavily biased in similar directions, predominantly reductionist (limit specific 
impacts of individual substances) and with a strong anthropocentric bias. 
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3.2 Need to Move Beyond the Symptomatic Approach 
 
We now are beginning to appreciate that, while such activities reflected our knowledge 
at the time, and still have value, they are by themselves inadequate. They treat the 
symptoms — local environmental perturbations or hazards — rather than the disease — 
an unsustainable global economy. Virtually all significant regional and global 
environmental impacts are inherent characteristics of the operation of our current 
globalized economic system. They are direct products of the use of technology — the 
automobile and associated infrastructure, energy production and use patterns based on 
fossil fuel resources, consumer reliance on throwaway articles and packaging — which 
had their genesis during the Industrial Revolution, and which, by and large, have been 
created with no concern for environmental impact. Problems such as global warming, 
soil degradation and erosion, loss and degradation of fresh water resources, ozone 
depletion, and loss of biodiversity do not simply reflect bad management of emissions 
and residues. They represent widespread dysfunctional economic choices, particularly 
in the selection and use of technology. The assumptions of the Industrial Revolution — 
unlimited resources for population and economic growth — are not appropriate for an 
increasingly environmentally constrained world. 
 
3.3 Complex Systems Treatment of the Economy and Nature 
 
While local hazards must be controlled, such action must be seen as an adjunct to the 
most important policy endpoint: the achievement of, or at least the closer approach 
towards, a sustainable economy on the scale of decades to centuries. The focus cannot 
only be local, but also must be regional and global, including impacts that are only 
manifested over long time periods, or after significant lag times. The approach cannot at 
heart be reductionist; it must be systems-based, comprehensive, and recognize that 
many perturbations of concern manifest themselves only as emergent characteristics of 
complex systems — in this case, the economy and the supporting natural systems. 
 
3.4 Integration of Scientific, Technological, Environmental, and Economic 
Considerations 
 
Over time, there have been differences in approach to environmental management. 
Table One summarizes these.  In the past, resources were used and waste materials 
dumped outside of the work or community sites. The present controls reflect a much 
increased awareness of subtle dangers, but still treat our environment as open and 
reducible, not closed and integrated. Our task for the future is not remediation or 
improved emission controls; it is the re-engineering of the Industrial Revolution.  
 
The need to integrate technology, science, and environmental considerations throughout 
the economy becomes the responsibility of all of us: academics, policy makers, 
industrial leaders, environmental activists, citizens. Despite all the rhetoric and 
expenditures, society has really been treating environment (when treated at all) as 
overhead, conceptually trivial and irrelevant to its primary economic activities once the 
proper control equipment or regulation is in place.  
 
If we are truly serious about mitigating anthropogenic perturbation of fundamental 
natural systems, we can no longer afford the luxury of such naiveté. 
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Time 
Frame 

Primary 
Activity 

Focus of 
Activity 

Endpoint Relation of 
Environment 
to Economic 

Activity 

Underlying 
Conceptual 

Model 

Past Remediation Individual 
site, 
medium, 
or 
substance 

Reduce local 
anthropocentri
c risk 

Overhead Command 
and control 
in simple 
systems 

Present 
/ Past 
Focus 

Compliance Individual 
site, 
medium, 
or 
substance 

Reduce local 
anthropocentri
c risk 

Overhead Command 
and control 
in simple 
systems 

Present 
/ 
Future 
Focus 

Industrial 
ecology; 
Design for 
Environment 

Materials, 
products, 
services, 
and 
operations 
over life 
cycle 

Global 
sustainability 

Strategic and 
integral 

Guided 
evolution of 
complex 
systems 

 
Table 1:  Reference Time Frames for Management of Technology and Environment 

 
4. Ecological Approaches 
 
It is instructive to compare the industrial ecology approach to other common approaches 
frequently taken in thinking about the interactions among industry, environment, and 
society.  Table 2 summarizes these.  
 

Approach Effect on Technology Implications 
Continuation of 
Current Trends 

Ad hoc adoption of specific 
mandates (e.g. Emission controls); 
little effect on overall trends 

Unmanaged population 
crash; economic, 
technological, and 
cultural disruption 

Radical Ecology Return to low technology Unmanaged population 
crash; economic, 
technological, and 
cultural disruption 

Deep Ecology Appropriate technology; "low tech" 
whenever possible 

Lower population; 
substantial retrenchment 
of economic, 
technological, and 
cultural status 

Industrial 
Ecology 

Reliance on technological evolution 
within environmental constraints; 
biased to environmentally 
preferable technology 

Moderately higher 
population; substantial 
adjustments to economic, 
technological, and 
cultural status 
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Table 2: Ecological Options for Technology-Society Interactions 

 
4.1 Continuation of Current Trends: Unsustainable Growth 
 
Continuation of current trends is obviously fundamentally flawed; not so obviously, it 
is also a high-cost choice. A continuation of exponential growth can be followed only in 
the short term; it will bring extreme and highly visible environmental damage, followed 
by the imposition of substantial remediation and resource recovery costs on future 
generations and global systems generally. Continually escalating materials flows and 
rapid growth in capital stock, energy, and resource consumption simply cannot be 
maintained. The most likely outcome of the continuation of the status quo is, ironically, 
similar to that resulting from radical ecology (discussed below): a dramatic degradation 
of the quality of life and eventual reduction in human population, with ongoing 
political, economic, and social disruption. 
 
4.2 Radical Ecology: Severe Contraction 
 
Radical ecology refers to a return to pre-industrial, low- (even anti-) technology 
pastoralism. It rejects the use of modern agriculture, electronics, medicine, 
transportation, energy production, and other technological systems. This concept is 
mentioned in order to emphasize the connection between the level of technology and the 
supportable population. A radical ecological approach most probably could not support 
current population levels, much less those of the future; a drastic population collapse 
would occur. In addition, the pre-Industrial Revolution agrarianism is not recoverable 
without enormous remedial cost and, by the way, significant technological and 
biological effort, and would not be publicly supported. 
 
4.3 Deep Ecology: Managed Contraction 
 
Deep ecology represents a strategy that intends to integrate environmental values into 
the culture, but views technology with suspicion, in part because of the recognized 
impact of technology on environmental perturbations. Technology is seen as something 
to be controlled, not exploited, to be part of the problem rather than a component of the 
solution. Proponents advocate a return to low technology options, which, in all 
probability, would only support a lower level of human population (a reduced carrying 
capacity for our species). This reduction might be managed well enough, however, to 
produce a gradual and controlled transition. While possible, this option would require 
fundamental cultural change and may well be unattainable because the majority of the 
world's people will not want diminished material wealth. 
 
 
4.4 Industrial Ecology: Potentially Sustainable Development 
 
Industrial ecology, in contrast, recognizes the need for continued technological 
evolution, and sees the development of environmentally appropriate technologies as a 
critical component of the transition to a more sustainable world. Given that the global 
technology state and the level of human population are inextricably linked, if the goal is 
to maintain current population levels (or even to allow for population growth), evolving 
appropriate technology is a crucial requirement.  
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It is important to recognize that industrial ecology is not merely naive technological 
optimism. The data on human perturbation of complex fundamental natural systems are 
sparse and uncertain, and do not support a facile certainty that the human species can 
migrate itself to a relatively stable, desirable carrying capacity without significant 
economic, social, and cultural dislocations, or even precipitous population fluctuations. 
Rather, industrial ecology pragmatically incorporates as an operative assumption the 
possibility of a reasonably smooth transition to a stable carrying capacity. Realism 
dictates that progress from the present point in human history must occur — if it is to 
occur at all — within the degrees of freedom that actually exist, not those that wishful 
thinking would create. Of the four options listed here, then, industrial ecology appears 
to be the only practical, viable path. 
 
- 
- 
- 
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