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Summary 
 
This chapter presents different models and a brief review of the literature about the 
applicability of notions of optimality in the modeling of the large-scale properties of 
transportation networks. The models discussed are to a large extent only idealizations of 
real transportation networks and focus on their general, large-scale properties. However, 
an attempt is be made to underline what specific characteristics of real transportation 
networks have inspired our modeling effort. 
 
1. Introduction: Transportation Networks and General Properties of Spatial 
Networks 
 
The main purpose of the present chapter is to present some of our studies on the 
applicability of notions of optimality in the modeling of the large-scale properties of 
transportation networks. The models we will discuss are to a large extent only 
idealizations of real transportation networks, and aimed at highlighting general 
properties rather than focusing on specific applications. We will nevertheless try to 
underline what specific characteristics of real transportation networks have inspired our 
modeling effort, and, in the case of road networks discussed below, we will debate more 
at length to what degree simplified models can capture features of real networks. 
 
A secondary purpose of our presentation is to briefly review some literature about 
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optimal transportation networks that could help to frame our work in a wider context. 
Given the breadth of the field of transportation network, our review is partial at best, 
and possibly biased towards those pieces of work that are more closely related to our 
approach. 
 
Before proceeding it will be useful to briefly contextualize our approach in the broader 
field of network science. 
 
During the 1990s we have witnessed to an explosion in the interest for complex 
networks, but the adoption of optimality principle in the study of such networks has 
been pretty limited. There are possibly good reasons behind the scarce popularity of 
approaches based on optimization. The notion of optimality immediately implies the 
existence of a generic “objective” function to be either minimized or maximized and a 
“mechanism” or “agent” that is wise enough to identify the objective function and 
powerful enough to drive the realization of the optimal network. It is sufficient to 
consider a paradigmatic example of complex network such the WWW, that has been 
shaped through the uncoordinated action of countless individuals, to understand how 
improbable would it be to claim the existence of an objective function, or that any kind 
of optimal topology may have been achieved without the intervention of some 
regulating agency. In other words, one may have the impression that principles of 
optimality can be usefully invoked only when the network under scrutiny is the result of 
“design.” Hopefully, the brief review and the work presented here may help showing 
that principles of optimality have a range of applicability wider that one could think at 
first sight and they are not incompatible with the notion of complexity, and do not 
necessarily imply the existence of a mighty supervising agent.  
 
This chapter is organized as follows. In the next section we will briefly mention 
examples of transportation networks for whose study optimality principles have been 
successfully employed. In Section 3 we will deal with an abstract model of 
transportation network inspired by studies about the airport network and the physical 
Internet. We will assume that the network of interest realize the minimum of an 
objective function that depends quite generally from the topology of the network and on 
the fluxes that the network supports. In Section 4 we will discuss the topological 
transition between different classes of networks that occurs at varying the parameters 
that characterize the objective function. In Section 5 we will finally relax the 
assumption of global “optimum” and discuss a model for the formation of road 
networks based on a local (in time and space) optimization principle. 
 
2. Optimal Transportation Network 
 
Quite generally, a transportation network is a natural or artificial structure that conveys 
a specific quantity between geographically separated nodes. This definition is so broad 
that it covers an exceedingly large number of systems. Road networks, subways and 
train lines, rivers, electric circuits, circulatory systems in mammalians, pipelines, the 
Internet are just some of the example that could possibly be brought under such a wide 
umbrella. Principles of optimality have been invoked with explicative power in several 
of the examples mentioned above. 
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Figure 1. Two “unconstrained” example of network optimization with objective 
depending on Euclidean distance. In the left panel the average distance from a fixed 
point (blue) is minimized. Close-by points are connected to the reference point by 
independent roads, implying a huge total length. In the right panel the minimum 

spanning tree connecting the same set of points. A minimal total length implies a very 
long path between any two generic points. 

 
A principle of optimality can be described via an objective (cost) function from a 
specified set of networks to the set of real numbers. From a design point of view, one’s 
task is to select the network that minimize such function and satisfies a (optional) set of 
constrains. The technical problem in finding the optimal network obviously depends on 
the complexity of the function to be minimized and on the set of constrains to be 
satisfied. In relevant applications the complexity of the cost function is usually a 
consequence of the attempt of compromising between antagonist requirements. This 
fact is illustrated in Fig. 1 with an example inspired from a 1972 book of P. S. Stevens.  
 
In the left panel a set of points is to be connected in order to minimize the average (over 
all nodes) distance to a given reference point. If no other request are made the optimal 
solution is obviously realized by the star network centered in the reference point. Such 
solution optimizes the distance to the reference, but is clearly very expensive from the 
point of view of total length, since it provides independent connections also to points 
that are very close to each other. In the right panel is shown instead the shortest network 
that provides connectivity to all nodes. Such network realize an instance of Minimum 
Spanning Tree and it can be constructed by ranking the distances between all couple of 
points from shortest to longest, and, starting form the shortest link, progressively adding 
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links with increasing length, while disregarding those that happen to close a loop. The 
minimum spanning tree is obviously convenient from the point of view of the total 
length, but the typical path between two generic nodes is extremely intertwined and 
long. Indeed Gastner and Newman have shown that efficient networks that 
simultaneously have a short total length and provide efficient connectivity can be found 
[Gastner]. Another classical example that involves minimizing distances is the problem 
of the Steiner tree, where — as for the MST— the shortest network that provides global 
connectivity is searched, but auxiliary nodes can be added. Steiner trees are 
characterized by the fact that three links separated by a 120 degrees angle are incident 
on a generic auxiliary node. To find the Steiner tree for a generic set of points is known 
to be an NP complete problem. 
 
Both the problem of optimal traffic on a network and of optimal networks has a long 
tradition in mathematics and physics. 
 
Problems of optimization for transportation networks often involve the optimization of 
the flow (or traffic) supported by the network. A classical example is that of 
determining currents in a resistor network. After Kirchhoff, this is achieved solving 
continuity equations for each node (the algebraic sum of currents entering a node is 
zero), together with the equations that state that the current in a link is proportional to 
the drop in electric potential at the ends of the link. It can be easily shown that this is 
equivalent to minimizing the sum (over all links) of the square the currents (with the 
continuity constrains). In this approach the electric potentials are easily recovered and 
found to play the role of Lagrange multipliers, and the objective function corresponds to 
the energy dissipated by the circuit.  
 
More relevant to human mobility are the problems of traffic optimization on road 
networks. The problem has a long tradition and obvious importance in the field of civil 
engineering, possibly predating the seminal work by Wardrop in 1952. In these 
variational approaches, the cost per agent associated to traversing a link of the road 
network is usually a non-linear function of the total traffic supported by the link. In 
several circumstances the pattern of traffic that realize the Nash equilibrium (in this 
context a local minimum in which no single agent can change its route to a given 
destination without increasing its personal cost) is found to differ greatly from the 
global optimum. This circumstance is closely related to the well-known Braess paradox, 
the observation that removing specific links from a road network may lead to better 
traffic conditions. The paradox has found several empirical confirmations. 
 
There are occasions in which the simultaneous optimization of the network and its flows 
are required, as in one of the models discussed in the next sections. An example of this 
class of models occurs in the study of river networks. It has been shown that the 
stationary solutions of a class of differential equations that describe the evolution of the 
system landscape/river network are realized by the so-called Optimal Channel Networks 
that minimize an objective function dependent on the fluxes and that is related to the 
dissipated energy by the flow of water. From the point of view of its usefulness, the 
variational approach allows a direct calculation of the exponent characterizing the 
power-law statistical distributions that describe the self-similar nature of river networks. 
More generally, Banavar and collaborators have shown that a wide class of physical 
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phenomena related to transport can be re-interpreted with explicative power in a context 
of fluxes optimization. 
 
In the examples discussed above, the rationale to invoke optimality principle is either 
the fact that optimality is a direct consequence of physical laws (not an infrequent case 
in physics), as in the case of resistor and river networks, or is a consequence of specific 
choices made by agents that try to minimize some generic cost, as in the of traffic on 
road networks. There is a third main reason that can possibly justify the adoption of 
variational approaches: evolution. In the biological realm, in fact, is not unconceivable 
that efficient transportation structures arise as a result of adaptation or of natural 
selection. Under this umbrella it is worth remembering the work on circulatory systems 
in mammalians by MacMahon, the explanation for the 4/3 power law in allometric 
scaling by Banavar et al. (note that alternative hypothesis have been proposed by West 
et al.), and the study of food webs by Garlaschelli et al. A last example worth 
mentioning is that of metabolic networks. Price et al. have shown that specific pathways 
maybe discovered if conditions for optimal growth are assumed.  
 
With the exceptions of food webs and metabolic networks, all the studies mentioned 
above share the fact that the nodes of the network are embedded in a d-dimensional 
Euclidean space which implies that the degree is almost always limited and the 
connections restricted to `neighbors' only. A second broad class of optimal networks 
where spatial constraints are absent has been also  investigated. It has been shown, for 
example, that optimization of both the average shortest path and the total length can 
lead to small-world networks, and more generally, degree correlations or scale-free 
features can emerge from an optimization process. Cancho and Sole’ showed that the 
minimization of the average shortest path and the link density leads to a variety of 
networks including exponential-like graphs and scale-free networks. Guimera et al. 
studied networks with minimal search cost and found two classes of networks: star-like 
and homogeneous networks. Finally, Colizza et al. studied networks with the shortest 
route and the smallest congestion and showed that this interplay could lead to a variety 
of networks when the number of links per node is changed. 
 
- 
- 
- 
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