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Summary  
  
Brain function is carried out by an astronomically large network of interconnected 
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neurons. Thanks to the impressive progress in brain imaging techniques an increasing 
amount of spatiotemporal brain data is now available. The analysis of this data using 
statistical physics approaches allows for a reduction of the brain spatiotemporal 
dynamics into information flow on a complex network. Using this view, recent studies 
revealed that these brain networks share several principles with natural, social and 
technological systems. These notes summarize the most relevant advances in our 
understanding of the brain using this approach. 
  
1. Introduction - The Brain is A Network 
 
Brain function is carried out by a network of approximately 1010 interconnected 
neurons. An increasing amount of spatiotemporal brain data is now available thanks to 
the impressive progress in brain imaging techniques in particular with functional 
Magnetic Resonance Imaging (fMRI). To analyze such a large and complex body of 
information, conceptual approaches grounded in statistical physics have been used 
recently. This work showed that the dynamics of these patterns can be reduced to 
complex networks that share several principles with natural, social and technological 
systems. The aim of these notes is to describe the most relevant advances in our 
understanding of the brain using this approach, focusing only on those results providing 
clues about the underlying critical dynamics of the brain. Other excellent surveys 
providing a broader perspective, including medical applications can be found in Sporns 
et al (2004), Bassett and Bullmore (2006), Reijneveld et al (2007), Bullmore and 
Sporns, (2009).  
 
The chapter is organized as follows. After introducing the problem, section 2 describes 
how brain networks are derived. Section 3 describes the initial brain imaging 
experiments showing a broad distribution of functional connectivity, implying that brain 
networks are scale-free. Section 4 discusses how these scale-free properties are 
conceptually linked to critical dynamics in physical systems. This includes a detailed 
comparison between the brain results with those extracted from a paradigmatic critical 
system; the Ising model. Section 5 is dedicated to discuss the implications and the final 
section summarizes the conclusions. 
 
2. Extracting Brain Functional Networks from the Data 
 
Brain activity evolves continuously over a network of gargantuan size and complexity, 
therefore and it is crucial before attempting any meaningful analysis to reduce the data 
to a manageable size. One possible focus is on the interactions between brain sites, and 
uses that information to construct the adjacency matrix defining a network, often called 
“correlation network”. This is something done previously in many other systems as for 
instance, to study the interactions between cell proteins (Jeong et al, 2001) or gene 
expression (Stuart et al, 2003). In this manner, the problem is reduced to the study of a 
graph composed by nodes (sites) and links (interactions). The cartoon in Figure 1 
illustrates these steps after the brain data is collected, as described by Eguiluz and 
colleagues (Eguiluz et al, 2005). Each snapshot of brain activity in this type of 
experiments is a fMRI image composite from the so-called BOLD (blood oxygenated 
level dependent) signal, which is a directly related to the level of neuronal activity in 
any given brain site. Typically the spatial resolution is of about 36 slices (3 mm thick) 
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from top to bottom of the brain, divided equally into a 64 by 64 matrix (3.475 mm x 
3.475 mm wide) resulting in approximately cubic regions called voxels. The activity is 
recorded at consecutive intervals (in this case every 2.5 sec.) to produce typically 400 
samples. As was stated above, the interest is to use the interactions between brain sizes 
to define a network. For simplicity, this is done computing the correlation between sites 
within a time window. Denoting the activity in voxel x  at time t  as ( ),V x t  then the 
linear correlation coefficient between all pair of voxels, ix and jx  is computed as: 
 

( )
( ) ( ) ( ) ( )

( )( ) ( )( )
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where ( )( ) ( ) ( )
222 , ,V x V x t V x tσ = −  and the quantities inside brackets represent 

temporal averages. 
 
In principle, as it is discussed later, networks can be built by defining negative or 
positive correlations, although the initial results were obtained using positive 
correlations. Thus, pairs of voxels whose correlation r  exceeds a threshold ρ  are 
considered functionally linked. Of course, if one chooses a threshold too small, then the 
majority of the voxels will appear to be connected to one another. Likewise if the 
threshold is too high, then voxels will appear isolated. There is a wide range of 
threshold values for which networks remain clearly defined indicating that the main 
conclusions are robust with respect to the selection of parameters.  

 
 

Figure 1. Steps to derive the networks from the BOLD fMRI signals. The correlation 
between fMRI signals (a) is computed to obtain a correlation matrix (b). The elements 

in the matrix passing a given threshold (c) define the network (d). Randomizing the 
nodes location, (e) a random network is obtained (f) and used to compare several 
statistics (g-j) with the original network. The node spatial location (k) can be also 

visualized. 
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3. Brain Correlation Networks Are Scale Free 
 
An example of a brain network extracted using this method is shown in Figure 2. For 
clarity, only one eighth of the nodes are included in this illustration. The pattern of 
inhomogeneous connectivity is immediately evident by the fact that a relatively large 
proportion of nodes have a single link and a smaller proportion of nodes exhibit 
numerous connections. A quantitative estimate of this inverse relationship is shown in 
the bottom panel of Figure 2 demonstrating a skewed distribution of the number of links 
with a tail approaching a distribution ( ) ~  p k k γ− p(k)~ k-γ (with γ  around 2). This 
power law is more evident for networks constructed with higher thresholds; i.e., less 
correlated conditions. For networks constructed with lower thresholds, a maximum 
appears which shifts to the right as ρ decreases.  
 
The small inset in panel B of Figure 2 shows the distribution of links of a surrogate 
network constructed by randomly shuffling the original time sequence of each voxel´s 
magnetic resonance signal. This is done to reject the possibility that the network arises 
from correlations non related to brain dynamics. The degree distribution of these 
surrogate networks does not fit a power law, but rather display a Gaussian distribution 
in which the mean and width depend on the ρ threshold used. These results reported by 
Eguiluz and colleagues demonstrate that brain dynamics, at this relatively large scale, 
evolves over a scale free network. These initial finding are now confirmed by other 
authors (Van der Heuvel et al, 2008) in a variety of experimental settings indicating that 
a few brain regions are very well connected (the right of the distribution), many more 
regions are only interacting with a few others, and a broad intermediate situation can be 
found to exist between these two extremes.  
 
Other calculations revealed that the average number of links as a function of -physical- 
distance between brain sites also decays as a power law, implying that there is no 
characteristic length for the interactions between any two brain sites (Eguiluz et al 
2005). Two other statistical properties of these networks, path length and clustering 
were computed as well (Boccaletti et al 2006). The path length (L) between two voxels 
is the minimum number of links necessary to connect both voxels. Clustering (C) is the 
fraction of connections between the topological neighbors of a voxel with respect to the 
maximum possible. 
 
Measurements of L  and C  were also made in a randomized version of the brain 
network. The main finding was that L  remained relatively constant in both cases while 
C  in the random case resulted much smaller, implying that brain networks are “small 
world” nets, a property with several implications in terms of cortical connectivity. 
Further calculations revealed that the distribution of links amongst neighbors are 
positively correlated, in other words, highly connected nodes connect with highly 
connected ones and vice versa.  
 
This was a surprising finding since this property, known as assortativity, is mostly 
found in social networks but not seen previously in biological systems, were the rule is 
that negative correlations regulate connectivity. Summarizing, the initial work of 
Eguiluz et al. showed that functional brain networks exhibit highly inhomogeneous 
scale-free functional connectivity with small world and assortativity properties.  
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Figure 2. A typical brain network extracted from functional magnetic resonance 
imaging. Top panel shows a pictorial representation of the network where the nodes are 

colored according to its degree: yellow=1, green=2, red=3,blue=4, etc. The bottom 
panel shows the degree distributions for networks constructed with two correlation 
thresholds: 0.7ρ =  (blue circles) and 0.6ρ =  (red triangles). The inset depicts the 

degree distribution for an equivalent randomly connected network. 
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