
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

EVOLUTIONARY COMPUTATION

Th. Bäck
Leiden Institute of Advanced Computer Science, Leiden University,The Netherlands

Keywords: adaptation, evolution strategy, evolutionary programming, genetic
algorithm, genetic programming, optimization, self-adaptation.

Contents

1. A General Evolutionary Algorithm
2. Classical Genetic Algorithms
2.1 The Structure of Individuals
2.2 Mutation
2.3 Recombination
2.4 Selection
3. Evolution Strategies
3.1 The Structure of Individuals
3.2 Mutation
3.3 Recombination
3.4 Selection
4. Evolutionary Programming
4.1 The Structure of Individuals
4.2 Mutation
4.3 Recombination
4.4 Selection
5. Genetic Programming
5.1 The Structure of Individuals
5.2 Mutation
5.3 Recombination
5.4 Selection
6. Theory of Evolutionary Algorithms
6.1 Convergence Velocity
6.2 Convergence Velocity Analysis of Genetic Algorithms
6.3 Classical Genetic Algorithm Theory
6.4 Global Convergence Properties
7. Applications
8. Conclusion
Glossary
Bibliography
Biographical Sketch

Summary

This contribution summarizes the field of evolutionary computation, i.e., computational
methods for search and optimization gleaned from the model of organic evolution. The
main classical branches of evolutionary computation, namely genetic algorithms,
evolution strategies, evolutionary programming and genetic programming, are presented

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

in a unified way by discussing the structure of individuals and the typical evolutionary
operators mutation, recombination, and selection for each of the methods. Furthermore,
some of the most important theoretical results on genetic algorithms and evolution
strategies are presented, and the application possibilities of evolutionary computation
are outlined.

1. A General Evolutionary Algorithm

Evolutionary algorithms mimic the process of organic evolution, the driving process for
the emergence of complex and well adapted organic structures. At a simplified level,
evolution can be seen as the result of the interplay between the creation of new genetic
information and its evaluation and selection. A single individual of a population is
affected by other individuals of the population (e.g., by food competition, predators, and
mating), as well as by the environment (e.g., by food supply and climate). The better an
individual performs under these conditions the greater its chance to live for a longer
while and generate offspring, which in turn inherit the (disturbed) parental genetic
information. Over the course of evolution, this leads to a penetration of the population
with the genetic information of individuals of above-average fitness. The non-
deterministic nature of variation leads to a permanent production of novel genetic
information and therefore to the creation of differing offspring. The following structure
of a general evolutionary algorithm reflects on a high level of abstraction all essential
components of standard implementations of evolutionary algorithms:

Algorithm 1

t : = 0;
initialize P(t);
evaluate P(t);
while not terminate do
P′ (t) : = select1(P(t));

P′ ′ (t) : = variation(P′ (t));

evaluate(P′ ′ (t));

P(t+1) : = select2(P′ ′ (t) ∪ Q);
t:=t+1;
od

The classical instances of evolutionary algorithms, namely genetic algorithms, evolution
strategies, evolutionary programming and genetic programming, can all be described in
the conceptual framework of the above pseudocode formulation. The following general
features, however, are common to all evolutionary algorithms and can therefore be seen
as the defining properties of evolutionary computation:

• P(t) denotes a population (a multiset, i.e., multiple copies of individuals are

possible) of a certain number μ of individuals (candidate solutions to a given
problem) at generation (iteration) t of the algorithm. μ is called parent population
size in the following.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

• The initialization at t = 0 can be done randomly, or with known starting points
obtained by any method.

• The evaluation of a population involves calculation of its members quality according
to the given fitness function (i.e., a quality criterion such as an objective function f:
M → ℜ in case of an optimization task, assigning a quality value ()xf to solution
candidates x ∈ M, where M denotes the search space of the optimization problem).

• The variation operators include the exchange of partial information between
individuals (so-called recombination or crossover operators) and the typically small,
random variation of single individuals (so-called mutation operators).

• By means of the variation operators, an offspring population P′(t) of λ candidate
solutions is generated. λ is called offspring population size in the following.

• Selection operators can be applied for selecting the intermediate population P′(t)
before any variational operators are applied, for selecting the new parent population
from the offspring population P′′(t), or for both purposes. The operator select1 plays
the role of a kind of mating selection, acting on the individuals prior to their
involvement in recombination and mutation operators, while select2 can be
interpreted as environmental selection, acting on the offspring of a population.

• Concerning the settings of μ and λ, no special assumptions are made except μ ≥ 1, λ
≥ 1. If λ = 1 (only a single offspring is created, evaluated and substituted within P(t)
at each generation), the algorithm is sometimes called a steady-state algorithm. If λ
≤ μ, only the worst fraction γ = λ/μ of the parent population P(t) is replaced at each
generation. The fraction γ is usually called the generation gap. If λ > μ, an offspring
surplus is created and the environmental selection operator select2 is utilized to
reduce the population size again to μ individuals.

• Q is a special set of individuals that might be considered by the select2 selection
operator, e.g., Q = P(t) if γ < 1 (but Q = ∅ is possible as well).

• The algorithm terminates if no more improvements are achieved over a number of
subsequent iterations or if a given amount of time is exceeded.

• The algorithm returns the best (according to the quality criterion) individual ever
found during its execution or the best individual from the last generation of the run.

In the following, we will describe the mainstream instances of this general evolutionary
algorithm in their standard forms. A large number of further variations have been
developed in the past decade, especially by means of exchanging operators between the
standard instances of evolutionary algorithms, by developing new operators, and by
applying evolutionary algorithms to new search spaces. These variations cannot be
discussed in this paper, and the interested reader is referred to the Handbook of
Evolutionary Computation (see references) for further information.

2. Classical Genetic Algorithms

Referring to the general evolutionary algorithm outline as given in algorithm 1, the
classical genetic algorithm is characterized by the following properties:

• Individuals are represented as binary vectors of fixed length l, i.e., x ∈ {0,1}l.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

• In case of the so-called generational replacement, offspring and parent population
sizes are identical (λ = μ), P(t+1) : = P′′(t) (there is no environmental selection), and
select1 (mating selection) is the only selection operator.

• A generation gap γ < 1 including the steady-state case γ = 1/μ is sometimes used as
an alternative to generational replacement.

• Classical genetic algorithms do not use λ > μ. The main emphasis is put on mating
selection.

• Crossover occurs in various instantiations and acts as main variation operator, while
mutation is of secondary importance and acts as a background operator.

In the following sections, these components of classical genetic algorithms are
discussed in detail.

2.1 The Structure of Individuals

Canonical genetic algorithms use a binary representation of individuals as fixed-length
strings over the alphabet {0,1}, such that they are well suited to handle pseudoboolean
optimization problems of the form

f: {0,1}l → ℜ . (1)

Figure 1: Decoding process used in canonical genetic algorithms for continuous search
spaces. Γi denotes the linear mapping of an integer value k ∈ {0,…,2l′−1} to the interval

[ui,vi], i.e.,
Γi = ui + [(vi − ui)/(2l′−1)] ·k

Sticking to the binary representation, genetic algorithms often enforce the utilization of
encoding and decoding functions h: M → {0,1}l and h′: {0,1}l → M that facilitate
mapping solutions x ∈ M to binary strings h(x) ∈ {0,1}l and vice versa, which
sometimes requires rather complex mappings h and h′. In case of continuous parameter
optimization problems, for instance, genetic algorithms typically represent a real-valued
vector x ∈ ℜ n by a binary string y ∈ {0,1}l as follows: the binary string is logically
divided into n segments of equal length l′ (i.e., l = n ·l′), each segment (x1 …xl′) is
decoded to yield the corresponding integer value ∑ =

'
1

l
i xi 2i−1, and the integer value is

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

in turn linearly mapped to the interval [ui, vi] ⊆ ℜ (corresponding to the i-th segment
of the binary string) of real values. Figure 1 illustrates this decoding process for string
segments of length l′ = 9 (allowing for the representation of the integers {0,1,…,511}),
which are mapped by means of h′ to the interval [−50,50].

Presently, a Gray code interpretation of the binary string is often used for decoding
purposes. The main advantage of a Gray code is seen in the fact that it maps Euclidean
neighborhoods into Hamming neighborhoods due to the representation of adjacent
integer values by binary strings with Hamming distance one (i.e., they are different by
one bit only). Theoretical and experimental investigations strongly support this point of
view.

2.2 Mutation

Mutation in genetic algorithms was introduced by Holland as a dedicated ``background
operator'' of small importance. Mutation works by inverting bits with very small
probability such as pm = 0.001, pm ∈ [0.005,0.01], or pm = 1/l. Recent studies have
impressively clarified, however, that much larger mutation rates, decreasing over the
course of evolution, are often helpful with respect to the convergence reliability and
velocity of a genetic algorithm, and that even so-called self-adaptive mutation rates are
effective for pseudoboolean problems.

Figure 2: Mutation operator used in canonical genetic algorithms, with a bit inversion
occurring at two random positions within the parent individual

The mutation operator is illustrated in figure 2. In this example, two bits of the parent
individual are inverted by mutation. In general, for pm = 1/l, one bit on average is
expected to mutate per individual, but in principle also multiple mutations are possible
(with exponentially decreasing probability, however). It should be noticed that this is an
important property of the mutation operator, because changing multiple bits at the same
time at least in principle facilitates the algorithm to escape from local optima - even if
the probability of this to happen might be vanishingly small.

2.3 Recombination

The variation operators of canonical genetic algorithms, mutation and recombination,
are typically applied with a strong emphasis on recombination. The standard algorithm
performs a so-called one-point crossover, where two individuals are chosen randomly
from the population, a position in the bitstrings is randomly determined as the crossover
point, and an offspring is generated by concatenating the left substring of one parent and
the right substring of the other parent.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

Figure 3: Two-point recombination operator used in canonical genetic algorithms. The
two recombination positions are chosen randomly

Numerous extensions of this operator, such as increasing the number of crossover
points, uniform crossover (each bit is chosen randomly from the corresponding parental
bits), and others have been proposed, but similar to evolution strategies no generally
useful recipe for the choice of a recombination operator can be given. The theoretical
analysis of recombination is still to a large extent an open problem. Recent work on
multi-parent recombination , where more than two individuals participate in generating
a single offspring individual, clarifies that this generalization of recombination might
yield a performance improvement in many application examples. Unlike evolution
strategies, where it is either utilized for the creation of all members of the intermediate
population (the default case) or not at all, the recombination operator in genetic
algorithms is typically applied with a certain probability pc, and commonly proposed
settings of the crossover probability are pc = 0.6, and pc ∈ [0.75,0.95].

An example of two-point crossover is given in figure 3. The recombination points
marked by vertical lines are chosen randomly, and the offspring is created by
exchanging the segment limited by the two crossover points between the parents, thus
creating two offspring. Typically, one of the offspring individuals is randomly selected
to be chosen for the next generation, while the other one is discarded.

2.4 Selection

In genetic algorithms the mating selection operator select1 is typically implemented as a
probabilistic operator, using the individual selection probabilities

i j
j 1

p(a) f (a) / f (a)
μ

=
= ∑ (2)

calculated as relative fitnesses of the individuals. This method - called proportional
selection - requires positive fitness values and a maximization task, so that scaling

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

functions are often utilized to transform the fitness values accordingly. Rather than
using absolute fitness values, rank-based selection methods utilize the indices of
individuals when ordered according to fitness values to calculate the corresponding
selection probabilities. Linear as well as nonlinear mappings have been proposed for
this type of seletion operator. Another alternative called tournament selection works by
taking a random uniform sample of a certain size q > 1 from the population, selecting
the single best of these q individuals to survive for the next generation, and repeating
the process until the new population is filled. This method gains increasing popularity
because it is easy to implement, computationally efficient, and allows for fine-tuning the
selective pressure by increasing or decreasing the tournament size q. While most of
these selection operators have been introduced in the framework of a generational
genetic algorithm, they can also be used in combination with the steady-state and
generation gap methods and of course in combination with the other branches of
evolutionary computation.

3. Evolution Strategies

In terms of the general evolutionary algorithm, an evolution strategy is characterized by
the following main distinguishing features:

• Individuals are represented as real-valued vectors, consisting of object variable

vectors x ∈ ℜ n plus some additional information, the so-called strategy
parameters.

• No mating selection is used, i.e., P′(t) = P(t).
• Assuming λ >> μ, the so-called (μ,λ)-selection operator (with Q = ∅)

deterministically chooses the μ best solutions from P′′(t) to become P(t+1).
Alternatively, the (μ+λ)-evolution strategy selects the μ best solutions from the
union of P′(t) and P(t) (i.e., Q = P(t)) for creating P(t+1).

• The mutation operator is implemented by means of normally distributed variations
based on adaptable step sizes (i.e., variances and covariances of the normal
distribution). Mutation is the main variation operator, while recombination plays
only a secondary role.

• Variances and covariances of the mutation operator are strategy parameters which
are part of the individuals. These strategy parameters are themselves optimized
during the search according to a process called self-adaptation , a second-order
learning process working on the parameters of the evolution strategy.

As before, the components of classical evolution strategies are discussed in the
following sections.

3.1 The Structure of Individuals

For a given optimization problem

f : M ⊆ ℜ n → ℜ ,)(xf → min (3)

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

an individual of the evolution strategy contains the candidate solution x ∈ Rn as one part
of its representation. Furthermore, there exist a variable amount (depending on the type
of strategy used) of additional information, so-called strategy parameters , in the
representation of individuals. These strategy parameters essentially encode the n-
dimensional normal distribution which is to be used for the variation of the solution.

More formally, an individual a = (x ,σ ,α) consists of up to three components x ∈
ℜ n (the solution), σ ∈ σnℜ (a set of standard deviations of the normal distribution),
and α ∈ [] αππ n,− (a set of rotation angles representing the covariances of the n-
dimensional normal distribution), where nσ ∈ {1,…,n} and nα ∈ {0,(2n−nσ)·(nσ − 1)/2}.
The exact meaning of these components is described in more detail in section 3.2 .

-
-
-

TO ACCESS ALL THE 37 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

Congress on Evolutionary Computation, CEC 1999, CEC 2000. Proceedings of the Congress on
Evolutionary Computation. IEEE Press, Piscataway, NJ, 1999, 2000. [Proceedings volumes of a
conference series that emerged 1999 from mainly the IEEE International Conference on Evolutionary
Computation and the Conference on Evolutionary Programming. Held every year.]

D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press,
Piscataway, NJ, 1995. [An overview of the three main paradigms of evolutionary algorithms, with some
emphasis on machine intelligence.]

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley,
Reading, MA, 1989. [A textbook on classical genetic algorithms, focusing on the schema theory approach
to explain the power of genetic algorithmns.]

G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kova\'cs, Hamburg, 1997.
[A unified theoretical investigation of evolutionary algorithms, with a strong focus on convergence
properties such as convergence reliability and convergence velocity.]

Genetic and Evolutionary Computation Conference, GECCO 1999, GECCO 2000. Proceedings of the
Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco, CA, 1999, 2000.
[Proceedings volumes of a conference series that emerged 1999 from mainly the International Conference
on Genetic Algorithms and the Genetic Programming Conference. Held every year.]

H.-G. Beyer. The Theory of Evolution Strategies. Natural Computing Series, Springer, Berlin, 2000. [An
in-depth theoretical investigation of evolution strategies.]

H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. Wiley,
New York, 1995. [A textbook on modern evolution strategies, with an empirical comparison between
evolution strategies and a large set of traditional optimization methods.]

H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie,
volume 26 of Interdisciplinary Systems Research. Birkhäuser, Basel, 1977. [The classical textbook from
the inventor of (μ,λ)-evolution strategies.]

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-44-02-01

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

I. Rechenberg. Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Frommann-
Holzboog, Stuttgart, 1994. [A textbook on modern evolution strategies, including various issues such as
nested evolution strategies, noisy environments and theoretical investigations. Contains also a reprint of
Rechenberg 1973.]

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, Stuttgart, 1973. [The classical book on (1+1)-evolution strategies, from
their inventor.]

J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann
Arbor, MI, 1975. [The classical book on genetic algorithms, also more generally called adaptive plans by
the author.]

J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Complex Adaptive Systems. The MIT Press, Cambridge, MA, 1992. [The first book on genetic
programming, by its inventor.]

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolution. Wiley,
New York, 1966. [The classical book on evolutionary programming in its original form for evolving finite
state machines.]

M. D. Vose. The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA,
1999. [Presents an analysis of the classical genetic algorithm by means of dynamical systems theory.]

M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, Cambridge, MA, 1996. [A more
recent textbook on genetic algorithms.]

Parallel Problem Solving from Nature Conference, PPSN 1990+2. Proceedings of the Conference on
Parallel Problem Solving from Nature. Lecture Notes in Computer Science vols. 496, 866, 1141, 1498.
Springer, Berlin. [Proceedings volumes of the main European Conference on Evolutionary Computation.
Held every second year.]

Th. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. Oxford
University Press, New York, and Institute of Physics Publishing, Bristol, 1997. [The big reference
handbook on evolutionary computation, with in-depth presentations of the algorithms, of theoretical
results, and of practical examples.]

Th. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.
[An overview of the three main paradigms of evolutionary algorithms, using a unified formal presentation
of the algorithms. Includes also some experimental comparison and theoretical results.]

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming: On the Automatic
Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers, San Francisco, CA,
1998. [An introduction to many variations and state-of-the-art technologies in genetic programming.]

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin, 1996.
[An overview of evolutionary computation, describing many different variations of the basic scheme.
Widely used as a textbook.]

Biographical Sketch

Thomas B"ack received the Diploma degree in Computer Science in 1990 and the Ph.D. degree in
Computer Science in 1994, both from the University of Dortmund, Germany. In 1995, he received the
best dissertation award of the German Association for Computer Science (GI) for his Ph.D. thesis on
evolutionary algorithms.

From 1990-1994, he worked as a Scientific Assistant at the Department of Computer Science of the
University of Dortmund. From 1994-1996, he was Senior Research Fellow at the Center for Applied
Systems Analysis within the Informatik Centrum Dortmund, and Department Director of the Center for
Applied Systems Analysis from 1996 - 2000.

Since March 1999, he is also Managing Director of divis digital solutions GmbH, and since January 2000
CTO of NuTech Solutions, Inc. and Managing Director of the German branch of NuTech Solutions

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Evolutionary Computation - Th. Bäck

©Encyclopedia of Life Support Systems (EOLSS)

(former divis digital solutions GmbH). The company specializes in optimization and data mining
applications of computational intelligence technology for industrial problems.

Since 1996, Dr. B"ack also serves as an Associate Professor in the Computer Science Department of
Leiden University, The Netherlands, and teaches courses on evolutionary computation and systems
analysis at Leiden University.

His current research interests are in the areas of theory and application of evolutionary computation and
related areas of computational intelligence, as well as in DNA computing.

He is author of the book Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms New York, NY: Oxford University Press, 1996 , co-
editor-in-chief of the Handbook of Evolutionary Computation (New York, NY: Oxford University Press
Institute of Physics Publishing, 1997), member of the editorial board of Evolutionary Computation
Cambridge, MA: The MIT Press , and associate editor of the IEEE Transactions on Evolutionary
Computation. He is also a member of the editorial board of the Natural Computing Series.

Dr. B"ack is a member of the IEEE and the Dutch Association for Theoretical Computer Science (NVTI),
serves on the IEEE Neural Networks Council's technical committee on evolutionary computation since
1995, was a co-program chair of the 1996 and 1997 IEEE International Conferences on Evolutionary
Computation (ICEC) and the Fifth Annual Conference on Evolutionary Programming (EP '96), program
chair of the Seventh International Conference on Genetic Algorithms and Their Applications (ICGA '97),
and co-chair of the fifth International Conference on Parallel Problem Solving from Nature (PPSN V).

