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Summary 
 
This contribution summarizes the field of evolutionary computation, i.e., computational 
methods for search and optimization gleaned from the model of organic evolution. The 
main classical branches of evolutionary computation, namely genetic algorithms, 
evolution strategies, evolutionary programming and genetic programming, are presented 
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in a unified way by discussing the structure of individuals and the typical evolutionary 
operators mutation, recombination, and selection for each of the methods. Furthermore, 
some of the most important theoretical results on genetic algorithms and evolution 
strategies are presented, and the application possibilities of evolutionary computation 
are outlined. 
 
1. A General Evolutionary Algorithm 
 
Evolutionary algorithms mimic the process of organic evolution, the driving process for 
the emergence of complex and well adapted organic structures. At a simplified level, 
evolution can be seen as the result of the interplay between the creation of new genetic 
information and its evaluation and selection. A single individual of a population is 
affected by other individuals of the population (e.g., by food competition, predators, and 
mating), as well as by the environment (e.g., by food supply and climate). The better an 
individual performs under these conditions the greater its chance to live for a longer 
while and generate offspring, which in turn inherit the (disturbed) parental genetic 
information. Over the course of evolution, this leads to a penetration of the population 
with the genetic information of individuals of above-average fitness. The non-
deterministic nature of variation leads to a permanent production of novel genetic 
information and therefore to the creation of differing offspring. The following structure 
of a general evolutionary algorithm reflects on a high level of abstraction all essential 
components of standard implementations of evolutionary algorithms:  
 
Algorithm 1  
 

 
 
 
 
 

t : = 0; 
initialize P(t); 
evaluate P(t); 
while not terminate do 
P′ (t) : = select1(P(t)); 

P′ ′ (t) : = variation(P′ (t)); 

evaluate(P′ ′ (t)); 

P(t+1) : = select2(P′ ′ (t) ∪  Q);
t:=t+1; 
od 
 

The classical instances of evolutionary algorithms, namely genetic algorithms, evolution 
strategies, evolutionary programming and genetic programming, can all be described in 
the conceptual framework of the above pseudocode formulation. The following general 
features, however, are common to all evolutionary algorithms and can therefore be seen 
as the defining properties of evolutionary computation:  
 
• P(t) denotes a population (a multiset, i.e., multiple copies of individuals are 

possible) of a certain number μ of individuals (candidate solutions to a given 
problem) at generation (iteration) t of the algorithm. μ is called parent population 
size in the following.  
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• The initialization at t = 0 can be done randomly, or with known starting points 
obtained by any method.  

• The evaluation of a population involves calculation of its members quality according 
to the given fitness function (i.e., a quality criterion such as an objective function f: 
M → ℜ   in case of an optimization task, assigning a quality value ( )xf  to solution 
candidates x  ∈ M, where M denotes the search space of the optimization problem).  

• The variation operators include the exchange of partial information between 
individuals (so-called recombination or crossover operators) and the typically small, 
random variation of single individuals (so-called mutation operators).  

• By means of the variation operators, an offspring population P′(t) of λ candidate 
solutions is generated. λ is called offspring population size in the following.  

• Selection operators can be applied for selecting the intermediate population P′(t) 
before any variational operators are applied, for selecting the new parent population 
from the offspring population P′′(t), or for both purposes. The operator select1 plays 
the role of a kind of mating selection, acting on the individuals prior to their 
involvement in recombination and mutation operators, while select2 can be 
interpreted as environmental selection, acting on the offspring of a population.  

• Concerning the settings of μ and λ, no special assumptions are made except μ ≥ 1, λ 
≥ 1. If λ = 1 (only a single offspring is created, evaluated and substituted within P(t) 
at each generation), the algorithm is sometimes called a steady-state algorithm. If λ 
≤ μ, only the worst fraction γ = λ/μ of the parent population P(t) is replaced at each 
generation. The fraction γ is usually called the generation gap. If λ > μ, an offspring 
surplus is created and the environmental selection operator select2 is utilized to 
reduce the population size again to μ individuals.  

• Q is a special set of individuals that might be considered by the select2 selection 
operator, e.g., Q = P(t) if γ < 1 (but Q = ∅ is possible as well).  

• The algorithm terminates if no more improvements are achieved over a number of 
subsequent iterations or if a given amount of time is exceeded.  

• The algorithm returns the best (according to the quality criterion) individual ever 
found during its execution or the best individual from the last generation of the run.  

 
In the following, we will describe the mainstream instances of this general evolutionary 
algorithm in their standard forms. A large number of further variations have been 
developed in the past decade, especially by means of exchanging operators between the 
standard instances of evolutionary algorithms, by developing new operators, and by 
applying evolutionary algorithms to new search spaces. These variations cannot be 
discussed in this paper, and the interested reader is referred to the Handbook of 
Evolutionary Computation (see references) for further information.  
 
2. Classical Genetic Algorithms 
 
Referring to the general evolutionary algorithm outline as given in algorithm 1, the 
classical genetic algorithm is characterized by the following properties: 
 
• Individuals are represented as binary vectors of fixed length l, i.e., x  ∈ {0,1}l.  
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• In case of the so-called generational replacement, offspring and parent population 
sizes are identical (λ = μ), P(t+1) : = P′′(t) (there is no environmental selection), and 
select1 (mating selection) is the only selection operator.  

• A generation gap γ < 1 including the steady-state case γ = 1/μ is sometimes used as 
an alternative to generational replacement.  

• Classical genetic algorithms do not use λ > μ. The main emphasis is put on mating 
selection.  

• Crossover occurs in various instantiations and acts as main variation operator, while 
mutation is of secondary importance and acts as a background operator.  

 
In the following sections, these components of classical genetic algorithms are 
discussed in detail.  
 
2.1 The Structure of Individuals 
 
Canonical genetic algorithms use a binary representation of individuals as fixed-length 
strings over the alphabet {0,1}, such that they are well suited to handle pseudoboolean 
optimization problems of the form  
 
f: {0,1}l → ℜ . (1) 
 

 
 

Figure 1: Decoding process used in canonical genetic algorithms for continuous search 
spaces. Γi denotes the linear mapping of an integer value k ∈ {0,…,2l′−1} to the interval 

[ui,vi], i.e.,  
Γi = ui + [(vi − ui)/(2l′−1)] ·k 

 
Sticking to the binary representation, genetic algorithms often enforce the utilization of 
encoding and decoding functions h: M → {0,1}l and h′: {0,1}l → M that facilitate 
mapping solutions x  ∈ M to binary strings h( x ) ∈ {0,1}l and vice versa, which 
sometimes requires rather complex mappings h and h′. In case of continuous parameter 
optimization problems, for instance, genetic algorithms typically represent a real-valued 
vector x  ∈ ℜ n by a binary string y  ∈ {0,1}l as follows: the binary string is logically 
divided into n segments of equal length l′ (i.e., l = n ·l′), each segment (x1 …xl′) is 
decoded to yield the corresponding integer value ∑ =

'
1

l
i  xi 2i−1, and the integer value is 
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in turn linearly mapped to the interval [ui, vi] ⊆  ℜ  (corresponding to the i-th segment 
of the binary string) of real values. Figure 1 illustrates this decoding process for string 
segments of length l′ = 9 (allowing for the representation of the integers {0,1,…,511}), 
which are mapped by means of h′ to the interval [−50,50].  
 
Presently, a Gray code interpretation of the binary string is often used for decoding 
purposes. The main advantage of a Gray code is seen in the fact that it maps Euclidean 
neighborhoods into Hamming neighborhoods due to the representation of adjacent 
integer values by binary strings with Hamming distance one (i.e., they are different by 
one bit only). Theoretical and experimental investigations strongly support this point of 
view.  
 
2.2 Mutation 
 
Mutation in genetic algorithms was introduced by Holland as a dedicated ``background 
operator'' of small importance. Mutation works by inverting bits with very small 
probability such as pm = 0.001, pm ∈ [0.005,0.01], or pm = 1/l. Recent studies have 
impressively clarified, however, that much larger mutation rates, decreasing over the 
course of evolution, are often helpful with respect to the convergence reliability and 
velocity of a genetic algorithm, and that even so-called self-adaptive mutation rates are 
effective for pseudoboolean problems.  
 

 
 

Figure 2: Mutation operator used in canonical genetic algorithms, with a bit inversion 
occurring at two random positions within the parent individual 

 
The mutation operator is illustrated in figure 2. In this example, two bits of the parent 
individual are inverted by mutation. In general, for pm = 1/l, one bit on average is 
expected to mutate per individual, but in principle also multiple mutations are possible 
(with exponentially decreasing probability, however). It should be noticed that this is an 
important property of the mutation operator, because changing multiple bits at the same 
time at least in principle facilitates the algorithm to escape from local optima - even if 
the probability of this to happen might be vanishingly small.  
 
2.3 Recombination 
 
The variation operators of canonical genetic algorithms, mutation and recombination, 
are typically applied with a strong emphasis on recombination. The standard algorithm 
performs a so-called one-point crossover, where two individuals are chosen randomly 
from the population, a position in the bitstrings is randomly determined as the crossover 
point, and an offspring is generated by concatenating the left substring of one parent and 
the right substring of the other parent.  
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Figure 3: Two-point recombination operator used in canonical genetic algorithms. The 
two recombination positions are chosen randomly 

 
Numerous extensions of this operator, such as increasing the number of crossover 
points, uniform crossover (each bit is chosen randomly from the corresponding parental 
bits), and others have been proposed, but similar to evolution strategies no generally 
useful recipe for the choice of a recombination operator can be given. The theoretical 
analysis of recombination is still to a large extent an open problem. Recent work on 
multi-parent recombination , where more than two individuals participate in generating 
a single offspring individual, clarifies that this generalization of recombination might 
yield a performance improvement in many application examples. Unlike evolution 
strategies, where it is either utilized for the creation of all members of the intermediate 
population (the default case) or not at all, the recombination operator in genetic 
algorithms is typically applied with a certain probability pc, and commonly proposed 
settings of the crossover probability are pc = 0.6, and pc ∈ [0.75,0.95]. 
 
An example of two-point crossover is given in figure 3. The recombination points 
marked by vertical lines are chosen randomly, and the offspring is created by 
exchanging the segment limited by the two crossover points between the parents, thus 
creating two offspring. Typically, one of the offspring individuals is randomly selected 
to be chosen for the next generation, while the other one is discarded. 
 
2.4 Selection 
 
In genetic algorithms the mating selection operator select1 is typically implemented as a 
probabilistic operator, using the individual selection probabilities  
 

i j
j 1

p(a) f (a ) / f (a )
μ

=
= ∑  (2) 

 
calculated as relative fitnesses of the individuals. This method - called proportional 
selection - requires positive fitness values and a maximization task, so that scaling 
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functions are often utilized to transform the fitness values accordingly. Rather than 
using absolute fitness values, rank-based selection methods utilize the indices of 
individuals when ordered according to fitness values to calculate the corresponding 
selection probabilities. Linear as well as nonlinear mappings have been proposed for 
this type of seletion operator. Another alternative called tournament selection works by 
taking a random uniform sample of a certain size q > 1 from the population, selecting 
the single best of these q individuals to survive for the next generation, and repeating 
the process until the new population is filled. This method gains increasing popularity 
because it is easy to implement, computationally efficient, and allows for fine-tuning the 
selective pressure by increasing or decreasing the tournament size q. While most of 
these selection operators have been introduced in the framework of a generational 
genetic algorithm, they can also be used in combination with the steady-state and 
generation gap methods and of course in combination with the other branches of 
evolutionary computation.  
 
3. Evolution Strategies 
 
In terms of the general evolutionary algorithm, an evolution strategy is characterized by 
the following main distinguishing features:  
 
• Individuals are represented as real-valued vectors, consisting of object variable 

vectors x  ∈ ℜ n plus some additional information, the so-called strategy 
parameters.  

• No mating selection is used, i.e., P′(t) = P(t).  
• Assuming λ >> μ, the so-called (μ,λ)-selection operator (with Q = ∅) 

deterministically chooses the μ best solutions from P′′(t) to become P(t+1). 
Alternatively, the (μ+λ)-evolution strategy selects the μ best solutions from the 
union of P′(t) and P(t) (i.e., Q = P(t)) for creating P(t+1).  

• The mutation operator is implemented by means of normally distributed variations 
based on adaptable step sizes (i.e., variances and covariances of the normal 
distribution). Mutation is the main variation operator, while recombination plays 
only a secondary role.  

• Variances and covariances of the mutation operator are strategy parameters which 
are part of the individuals. These strategy parameters are themselves optimized 
during the search according to a process called self-adaptation , a second-order 
learning process working on the parameters of the evolution strategy.  

 
As before, the components of classical evolution strategies are discussed in the 
following sections.  
 
3.1 The Structure of Individuals 
 
For a given optimization problem  
 
f : M ⊆ ℜ n → ℜ ,    )(xf  → min (3) 
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an individual of the evolution strategy contains the candidate solution x ∈ Rn as one part 
of its representation. Furthermore, there exist a variable amount (depending on the type 
of strategy used) of additional information, so-called strategy parameters , in the 
representation of individuals. These strategy parameters essentially encode the n-
dimensional normal distribution which is to be used for the variation of the solution.  
 
More formally, an individual a  = ( x ,σ ,α ) consists of up to three components x  ∈ 
ℜ n (the solution), σ  ∈ σnℜ  (a set of standard deviations of the normal distribution), 
and α ∈ [ ] αππ n,−  (a set of rotation angles representing the covariances of the n-
dimensional normal distribution), where nσ ∈ {1,…,n} and nα ∈ {0,(2n−nσ)·(nσ − 1)/2}. 
The exact meaning of these components is described in more detail in section 3.2 .  
 
- 
- 
- 
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