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Summary 
 
This chapter presents a broad perspective of the field of computational neuroscience 
focusing on general principles common to various computational models. Studies in 
computational neuroscience cover a wide range of topics from membrane currents and 
protein coupling at the level of the subcellular architecture to network properties of the 
nervous system, and then to the cognitive processes of learning, memory, attention, 
decision making and generating motor commands. General approaches towards an 
understanding of the functioning of such processes through modeling and simulation are 
outlined. The field of computational neuroscience is undergoing changes due to advances 
in neuroscience and computational science and through technological innovation. 
 
1. What is Computational Neuroscience? 
 
The ultimate goal of studies of computational neuroscience is to explain how the brain 
works through the modeling of information processing and motor control at various 
spatiotemporal scales, including the subcellular, neuronal, circuit, and system levels. 
Toward this end, experimental studies describe physiological phenomena to be explained, 
while studies in theoretical neuroscience provide mechanical or functional explanations 
for those observations, which become theories or hypotheses to be tested in subsequent 
experimental studies. To interconnect these studies, computational neuroscience intends 
to speculate on how the nervous system operates in three ways of mathematical models; 
computational theory guides research by giving functional explanations of entire system, 
models of hardware implementation gives details to simulation studies by giving 
mechanical explanations, and models of algorithms and representation are between them.  
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Simplified models are designed to capture the essential features of biological system, 
emphasizing the physiology and dynamics of functionally and biologically realistic 
system. Even perfect explanations are not sufficient to prove a theory. Therefore theories 
precisely formulated in computational neuroscience and expressed as computational 
models must be validated through computational simulation, analysis and 
experimentation. Numerical comparison of model predictions with experimental data 
enables one to validate the model. Without such validation, models cannot advance our 
understanding of the nervous system of natural life forms.  
 
Computational neuroscience continues to change as a result of advances in neuroscience 
and computational science and through technological innovation. Studies in 
computational neuroscience cover a wide range of topics from membrane currents and 
protein coupling at the level of the subcellular architecture to network properties of the 
nervous system, and then to the cognitive processes of learning, memory, attention, 
decision making and generating motor commands. The studies have their counterparts in 
the diverse research fields of system neuroscience, biological neuroscience, cognitive 
neuroscience and psychophysics; in a variety of areas, including vision, sensory-motor 
integration, motor control, development and plasticity. This chapter will introduce the 
reader to some general concepts of the field. Readers desiring additional information on 
how to create and use computational models are referred to other textbooks focusing on 
models in each research field (for example, Sejnowski and Churchland (1992); Abbott 
and Dayan (2001); Koch (1999); Sterratt et al. (2011)). 
 
2. Emergence of Computational Neuroscience 
 
The term “computational neuroscience” was introduced by Eric Schwartz (1990). He 
organized a conference, held in 1985, to provide a summary of the status of a field, which 
at that time was referred to as neural modeling, brain theory or neural networks. The 
proceedings of that meeting were later published as a book, “Computational 
Neuroscience”. However, the concept of computational neuroscience emerged much 
earlier among neuroscientists. Since the publication of “Cybernetics” by Norbert Wiener 
in 1948, there has been spectacular growth in the information available on the anatomy 
and physiology of the nervous system, as well as technological achievements such as the 
design of faster and more powerful computers. This has encouraged researchers to 
construct complex simulations of information processing and motor controls in the 
nervous system.  
 
For more than a century mathematical models have been applied to explain various 
biological phenomena. In 1907, for example, Louis Lapicque introduced the 
integrate-and-fire model of the neuron to explain the generation of action potential on the 
basis of firing rates. This model continues to be used in computational neuroscience in 
both cellular studies and studies of neural networks. In addition, Warren McCulloch and 
Walter Pitts proposed a model of synaptic transmission with a binary threshold for 
generating action potential (McCulloch-Pitts model, 1943). In this model, each neuron 
was treated as a logical unit within a network. This type of rate-based model has been 
extensively applied to artificial neural networks. Beginning in the 1950’s, experimental 
innovation enabled physiological studies to provide more specific data on some 
physiological phenomena. 
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After the invention of the voltage clamp technique, Alan Hodgkin and Andrew Huxley 
(1952) created the first biophysical model of the action potential. Subsequently, ion 
channels were discovered as the physical mediator of the membrane conductance 
described in their model. David Hubel and Torsten Wiesel (1959) discovered that neurons 
in the primary visual cortex are selective to orientation of contour lines. They showed that 
the orientation selectivity can be achieved through the hierarchical networks of neurons 
in the lateral geniculate nucleus and the primary visual cortex. Wilfrid Rall (1964) began 
biologically realistic anatomical modeling of neurons and dendrites, including the first 
multicompartment model using cable theory. Since experimental results were provided 
mainly for properties at the level of neurons at that point, these studies targeted the 
relationships between the input and output properties at the level of neurons. It is 
noteworthy that these pioneering works are not merely aged models; they are also the 
original models upon which many of the various computational models employed today 
are based.  
  
In the 1970’s, computational theorists began to have the expectation that the study of 
information processing and motor control in the nervous system might lead to 
development of new kinds of computational machines and vice versa. Approach of David 
Marr (1969), which would take into account the quantitative network architecture of the 
brain system being modeled to produce a quantitative theory, has inspired physiologists 
to investigate how the cerebellar cortex might learn to associate motor commands with 
actions. Those investigators considered the cerebellar cortex as a kind of Perceptron 
(Marr, 1969, Arbus 1971), which was originally proposed as a learning system in a 
simple neural network (Rosenblatt 1958). However, it would be years before 
experimental studies were sufficiently advanced to provide enough data to develop 
biologically realistic models or to test his ideas experimentally. Marr himself tried to test 
his prediction that synapses between parallel fibers and Purkinje cells in the cerebellum 
would be modified through climbing fiber input to the Purkinje cells, but he did not 
succeed in confirming that prediction (Eccles et al., 1967). Experimental proof of Marr’s 
fundamental idea of the mechanisms of learning in the brain would be obtained only later 
(Ito, 1984).  
  
Since then, the tremendous growth of anatomical and physiological studies has provided 
the opportunity to generate empirically adequate computational theories at several levels, 
even at the level of higher cortical functions. However, more computational models were 
aimed at addressing specific questions and relied heavily on experimental data to 
constrain them, so that different models were constructed at different levels of detail. 
Moreover, the rapid and dramatic advances in the power of computers are making 
computational neuroscience comprehensive and essential for all neuroscientists.  
 
3. What is the Role of Computational Neuroscience? 
 
David Marr played a key role in the establishment and rapid growth of this area of 
computational neuroscience. In “Vision” (1982), he argued that an aim of neuroscience 
should be to reveal the underlying mechanisms at three levels of analysis.  
 
1. Computational Theory. Studies at this level ask what problems does the processing 

solve, why does the system do what it does, what is the goal of the computation and 
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why is it appropriate, and what is the logic of the strategy by which it can be carried 
out? Here, models decompose the task into its main constituents to define the problem, 
set out how it can be solved, and predict new outcomes. 

2. Representations and Algorithms. Studies at this level ask how a computational theory 
can be implemented. Clearly, the nervous system uses specific representations and 
algorithms to handle information, and it is the goal of computational neuroscience to 
help identify them.  

3. Hardware Implementation. Studies at this level ask how the system physically realizes 
the algorithms and representations within the networks of the nervous system. Here 
the models are closely related to experimental data from anatomical, biological, 
physiological and psychological studies, and describe information processing and 
motor controls in a realistic manner. 

  
This simple framework provides an important and influential starting point for thinking 
about conceptual levels in the context of computation by nervous structures.  
 
Marr himself favored the idea that analyses at these three levels are weakly related, and 
inspiration and constraints from one level of analysis can guide research in another. 
Problems of computational theory can be studied without fully understanding the 
algorithm that executes the computation. Likewise, problems of algorithm can be solved 
without fully understanding their physical implementation in the nervous system. Thus, 
having a clear theory of what the brain is trying to accomplish can be a powerful research 
guide that can be further evaluated through research in computational neuroscience. 
 
However, such a top-down strategy can be severely damaged by ill-posed questions, 
which make available several solutions for the same problem given by a computational 
theory. In such cases, models primarily driven by functional considerations can provide 
only general guidance about what might happen in the brain, which will make it difficult 
to achieve inspired consideration of hardware implementation. Furthermore, nervous 
systems are the products of evolution, so their solutions to problems may differ from 
those obtained through smart design. Thus, biological implementation of computational 
neuroscience plays an important role in analyzing the task, devising the algorithm, and 
providing computational insight to researchers as to an appropriate algorithm that will 
make a model biologically realistic. This means the aforementioned three levels of 
analysis are not independent, and there is much more coupling and interaction than was 
previously appreciated. Modern computational neuroscience expects that the appropriate 
algorithm will fill the gap between studies at the theoretical level and those at the 
hardware implementation level.  
 
4. Property of Computational Modeling for Nervous Systems 
 
Computational neuroscience can be viewed as a theoretical neuroscience specialized to 
employ mathematical models for simulating the physiological phenomena observed in 
experimental studies. To describe this, researchers borrow methods from a wide variety 
of disciplines, including mathematics, physics, computer science and statistics. However, 
computational neuroscience has its own specialization, which distinguishes its models 
from hypotheses or conventional self-standing theories, like theory of learning disciplines 
such as machine learning, artificial neural networks and computational learning theory. 
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To validate theoretical considerations, computational models need to be biologically 
plausible and to be testable by means of numerical simulations and further experimental 
studies.  
 
4.1. Biological Constraints 
 
As mentioned, experimental studies are vital for developing models and for setting the 
initial parameters into models. Although the field of computational science may be 
explored without the benefit of biological constraints, which may lead to technological 
innovations, only experimental measurements made within the nervous system can show 
what the system is actually doing in nature. Important experimental inputs to 
computational neuroscience come from anatomical studies of the morphology and 
functional connectivity of structures, from physiological studies of the behavior of 
neurons and networks within neuronal systems, and from psychological studies of the 
effects on animal behavior. With these data, biologically plausible speculations can be 
developed into testable hypotheses, realized in models, tested experimentally, and 
evaluated analytically. Thus, models in computational neuroscience do not escape 
biological constraints. 
 
4.2. Simplifying Models 
 
One modeling strategy is to produce a very large-scale simulation that incorporates as 
much cellular detail as is available. Such models are made increasingly realistic by 
adding more variables and more parameters. However, by keeping too many details that 
are not essential for the scientific argument, these models may miss some aspects of 
signals that are relevant and should be captured in the study. Managing realistic models 
requires a substantial experimental database and a great deal of computational power. 
Furthermore, we do not yet fully understand the cells themselves, so the results can be 
invalidated by the absence of important features. Finally, it is all too easy to make a 
complex model fit a limited set of data, resulting in a poor understanding of the nervous 
system. Hence, simplicity should be a major goal when designing a reference model that 
is appropriate for testing a particular aspect of a system or a hypothesis.  
 
To better understand its behavior and underlying mechanisms, the nervous system is 
thought of as a kind of computational system. For this purpose, the functional elements 
involved in a specific functional task must be clarified within the system, so that the 
interaction among these elements can be investigated. Therefore, although models should 
be made as simple as possible, they must capture the main features of the data that should 
be captured. If this is achieved, modeling removes the ambiguity from theories and avoids 
the effects of unexpected aspects of data. On the other hand, a simplified model can 
become an end in itself and lose touch with nature. Some models have certainly been too 
abstract to justify the claims derived from them. Thus, models must be carefully 
constructed and reasonably simplified so that the results of careful scientific 
investigations lead to insight into natural processes. The aim of simplifying models in 
computational neuroscience is also to better comprehend the functionality of complex 
systems. It is not always possible to adequately justify all assumptions, but it is important 
to clarify which assumptions have been made and to debate them.  
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patch with little competing noise. 
Multi-electrode 
array 

: This is a device that contains many recording electrodes in the form 
of multiple plates or shanks, through which electrical activities of 
many neurons can be obtained simultaneously. 

Two-photon 
microscopy 

: This is a fluorescence imaging technique in which two photons of 
the infrared light are absorbed to excite fluorescent dyes. Using 
infrared light minimizes scattering in the tissue and the multi-photon 
absorption is strongly suppressed in the background signal. Both 
effects allow focal imaging of living tissue up to about one millimeter 
depth, leading to reveal three dimensional microstructures. Using 
calcium indicators allows to simultaneously monitor electrical 
activity of many individual neurons, which spreads in three 
dimensional space of the tissue. 
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