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Summary 
 
Brain-machine interfaces (BMIs) strive to restore neural functions to disabled 
individuals by linking brain circuitry to artificial devices, such as computers, prosthetic 
limbs, wheelchairs and communication systems. The BMI field has advanced 
considerably during the last two decades, driven by the developments in neural 
recording methods, computer science, robotic engineering and medical technology. 
BMIs are often classified by their function as sensory, motor or sensorimotor 
(bidirectional). Motor BMIs extract motor commands from brain signals and redirect 
them to artificial actuators. Sensory BMIs aim to restore sensory functions – hearing, 
vision, sense of touch and limb position – by interfacing neural structures with artificial 
sensors. Sensorimotor BMIs combine sensory and motor components. Additionally, 
cognitive BMIs have been proposed to decode higher-order brain signals, such as 
decisions, thoughts and memories. Depending on the degree of interference with the 
biological tissue, BMIs are classified as noninvasive or invasive. Noninvasive BMIs, for 
example those utilizing electroencephalography (EEG), are safe to use, but their 
bandwidth is limited. Invasive BMIs employ electrodes implanted in the brain to get 
access to highly informative neural signals produced by single neurons and their 
populations. Many decoding algorithms have been proposed for extraction of 
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information from brain activity and its utilization in BMIs. In addition to clinical goals, 
BMIs provide insights on fundamental brain mechanisms. 
 
1. Introduction 
 
1.1. Neural Control and When Things Go Wrong  
 
Motor movements are essential for the interaction of living organisms with each other 
and with the external world. Indeed, all forms of mental activity – from relatively 
simple to highly sophisticated – are eventually expressed through muscle contractions 
and relaxations. Muscles move our limbs, rotate our eyes, produce facial expressions, 
and generate speech. Properly controlled muscle activity is essential not only for motor 
behaviors, but also for sensory functions. We actively seek sensations: reach toward 
objects with our arms; touch and grasp these objects to appreciate their texture and 
shape. As the body as a whole and its individual parts move, their displacements are 
monitored by numerous sensory receptors located in the skin, muscles, tendons and 
joints, as well as by the vestibular apparatus and vision. These continuous streams of 
sensory and motor information are processed by multiple neural structures richly 
interconnected with each other. We are consciously unaware of the majority of details 
of this immense neural processing and take for granted that we can effortlessly perform 
such complex tasks as maintenance of balance, bipedal walking, dexterous hand 
movements, speech and many others. 

Unfortunately, neural trauma, disease or limb loss may seriously disrupt normal 
physiological functions. Destruction of just a few millimeters of nervous tissue may 
leave a person unable to move and feel. Spinal cord injury (SCI) breaks communication 
pathways between the brain and the spinal cord and produces devastating sensorimotor 
deficits, often a complete paralysis of large portions of the body. Neurological stroke 
can entail profound motor and sensory deficits. In Parkinson's disease, degeneration of 
dopamine neurons in substantial nigra pars compacta – a relatively small subcortical 
nucleus – dramatically damages sensorimotor and cognitive functions. Amyotrophic 
lateral sclerosis (ALS), a motor neuron disease, results in paralysis, muscle atrophy and 
eventually death. 

Strikingly, higher brain functions often remain intact in many of these dire neurological 
conditions. Thus, in SCI and locked-in syndrome, patients are unable to produce muscle 
contractions, but remain mentally able and awake. 

Currently, there is no cure for many devastating neurological conditions, such as SCI 
and ALS. Millions of paralyzed patients are bound to their beds or wheelchairs for the 
rest of their life. The development of efficient treatments for neurological trauma and 
disease is clearly one of the most important and difficult challenges for the medical 
science today.  
 
1.2. Connecting the Brain to Machines 
 
Brain machine interfaces (BMIs) represent an ambitious attempt to revolutionize 
treatment of paralysis and other neurological conditions. BMI is an artificial system that 
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enables communication between the brain and artificial devices, such as computers, 
limb prostheses and neural stimulators (Lebedev and Nicolelis 2006; Nicolelis and 
Lebedev 2009; Nicolelis 2011; Schwartz et al. 2006; McFarland et al. 2006; 
Hatsopoulos and Donoghue 2009) (Figure 1). Therapeutic BMIs strive to bypass the site 
of neural damage and to establish a direct functional connection between an intact brain 
area and an assistive device. For example, it has been proposed that SCI patients may be 
able to regain motor function if they are aided with a BMI that extracts signals from the 
motor cortex and directs these signals to robotic limbs, exoskeletons, or functional 
electrical stimulation (FES) devices connected to paralyzed muscles (Lebedev and 
Nicolelis 2006; Wolpaw et al. 2002). In addition to medical applications, BMIs can be 
employed by healthy people to enhance certain neural and physiological functions. 
 
In addition to the term “BMI”, systems interfacing neural tissue with external devices 
are called brain-computer interfaces (BCIs), mind-machine interfaces, neural interfaces, 
brain implants or neural prostheses. Although this terminology is commonly used 
interchangeably, some authors make strict distinction between specific BMI subtypes. 
In this chapter the term “BMI” is used in its most generic meaning.  

 

Figure 1. Brain-machine interface for reaching and grasping. Neuronal ensemble 
activity was recorded in multiple cortical areas in a rhesus monkey and translated into 
reaching and grasping movements performed by a robotic arm. The experimental setup 

included the data acquisition system, the computer running BMI decoders, the robot 
arm, and the visual display which provided feedback of the robot movements. Adapted 

from Carmena et al. (2003) 
 

BMIs introduce artificial components into neural circuitry: sensors for sampling neural 
signals, electronic chips that decode and transform neural activity, neural stimulation 
devices, robotic limbs with sensors of touch and position, wireless transmitters, and 
other components. In science fiction, biological organisms that receive artificial parts 
are called cyborgs. Whereas BMI-based cyborgs, as envisioned by futuristic writers, 
may emerge in the future, current BMI research considers medical treatment as the 
priority and major practical goal. Many branches of this clinically oriented research, 
particularly research on invasive BMIs, are still at the stage of animal experiments or 
preliminary human trials. Considerable effort will be required in these areas to develop 
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fully functional clinical neural prostheses. The major challenges that hinder the progress 
in clinical BMIs include the need to improve neural recording methods, problems of 
biocompatibility, the task of making BMIs fully implantable, development of advanced 
BMI decoders, incorporation of artificial sensation in BMI systems, and engineering of 
advanced robotic prostheses (Lebedev and Nicolelis 2006). One notable exception is the 
cochlear implant, which has already entered the clinical world and has helped hundreds 
of thousands patients to regain hearing (Shannon 2012; Wilson and Dorman 2008)). 
 
In addition to medical applications, BMIs have emerged that are intended for healthy 
people. These are, for example, BMI devices for computer gaming that allow users to 
play simply by thinking instead of using a joystick or a keyboard (Tangermann et al. 
2009). Additionally, BMIs can provide useful biofeedback of neural signals that people 
cannot perceive through their normal senses. For example, a safety system for a long-
distance driver continuously samples encephalographic (EEG) activity and issues a 
warning if signs of drowsiness are detected (Lin et al. 2010). In the future, consumer 
BMIs may allow humans to exceed many of normal abilities: computational power, 
accuracy, consistency, reaction time and physical strength. 
 
BMI research has experienced a spectacular growth since the 1990s, driven by the 
progress in multichannel neural recordings, computer technologies and robotic 
engineering. Many ideas previously entertained only by science fiction are becoming a 
reality. 
 
1.3. Ethical Considerations and Cognitive BMIs 
 
The prospect of BMI systems being able to reproduce virtually any brain function 
brings up a number of philosophical and ethical issues (Farah 2002; Vlek et al. 2012). Is 
it ethical to intrude into a person's mind with a BMI? Is there a danger that BMIs may 
interfere with the representation of self and free will? Even though many of these 
questions seem far-fetched, research has already started on BMIs that extract higher-
order cognitive signals from brain activity, such as decisions (Andersen et al. 2010) and 
memories (Berger et al. 2005). 
 
1.4. BMI Types by Function 
 
Currently, the major focus of BMI research is on systems that handle motor and sensory 
signals. These BMIs hold promise to provide practical solutions for restoration of vital 
functions to people with disabilities. BMI systems of this type are often classified as: (i) 
motor, (ii) sensory, or (iii) bidirectional (sensorimotor). This classification resembles a 
simplified description of the layout of the nervous system as an arrangement of sensory 
areas, motor areas and their interconnections. In actuality, there is no clear-cut 
separation between sensory and motor areas in the brain. For instance, cortical areas – 
even the ones called primary motor and primary sensory – process both motor and 
sensory information and therefore are best described as sensorimotor (Lilly 1956; Evarts 
1973). It is quite possible that with the advancement of the BMI field, BMIs will be 
incorporating sensorimotor modules instead of segregating motor and sensory 
processing. Recently demonstrated bidirectional BMIs represent the first step in this 
development (O'Doherty et al. 2011). 
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1.5. Invasive and Noninvasive BMIs 
 
Safety is an important consideration when choosing a BMI system. The safest, 
nonivasive BMIs, utilize sensors (e.g., EEG electrodes) that may come in contact with 
the skin, but do not penetrate the body. Although such systems are safe to use, their 
information bandwidth is limited, often resulting in insufficient speed and accuracy of 
performance (Lebedev and Nicolelis 2006; Wolpaw et al. 2002). 
 
Nonivasive recording methods, such as EEG, utilize weak neural signals detected at a 
distance from their source. These recordings often have low spatial resolution (the 
ability to discriminate signals from nearby brain sites) and/or low temporal resolution 
(the ability to detect rapid neural modulations), but they can be implemented much more 
easily than invasive recordings. Consequently, noninvasive BMIs have been extensively 
studied in humans. Many practical noninvasive systems have been developed, such as 
BMIs for communication, prosthetic control and wheelchair navigation (Galán et al. 
2008; Muller-Putz and Pfurtscheller 2008; Nicolas-Alonso and Gomez-Gil 2012; Sellers 
et al. 2010). 
 
Invasive BMIs hold promise to achieve a much higher bandwidth compared to 
noninvasive systems. An invasive surgical procedure is required to bring recording 
sensors close to brain neurons, the signal source. Extracellular activity or single neurons 
is usually recorded with microwires (typically 10-50 microns in diameter) implanted in 
the brain (Lebedev and Nicolelis 2006; Nicolelis and Lebedev 2009). In addition to 
single-unit recordings, microwires can be also used to record local field potentials 
(LFPs), which represent combined spiking activity and dendritic potentials of many 
neurons. 
 
Much of invasive BMI research has been conducted in experimental animals (rodents 
and primates). Human clinical research on invasive BMIs has recently started, with 
promising results (Hanson et al. 2012; Hochberg et al. 2012; Collinger et al. 2013). 
Several issues still hinder the acceptance of invasive BMIs in clinic, most importantly 
the need to achieve reliability and long-term performance of invasive implants and the 
need to transition from tethered to wireless recordings (Lebedev and Nicolelis 2006). 
 
Electrocorticography (ECoG) is a safer alternative to implanted microwires. This is a 
minimally invasive recording method that utilizes electrodes placed on the brain 
surface. Craniotomy is required, but the risk of neural damage is decreased. ECoG 
recordings cannot resolve discharges of single neurons, but they work well to detect 
synchronous electrical activity of large populations of neurons. 
 
2. History of Research and Commercialization 
 
2.1. The Birth of BMI Field 

The first experiments in which multiple electrodes were implanted in the brain date 
back to the 1950s when John Lilly implanted 25 to 610 electrodes in monkey cortex at 
intervals from one to two millimeters apart. He then applied electrical stimulation 
through these electrodes to elicit movements (Lilly 1956). Lilly observed that 
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movements occurred even when he stimulated cortical areas presumed to be purely 
sensory. He concluded that each cortical area was best characterized as sensorimotor 
rather than purely sensory or purely motor. 

In the 1960s and 1970s, David Nowlis, Joe Kamiya, Abraham Black, Maurice Sterman 
and their colleagues experimented with EEG as a source of biofeedback that enabled 
subjects (both animals and humans) to gain control over their own brain rhythms 
(Lebedev and Nicolelis 2006). 

In 1963, Grey Walter conducted a study which can be considered the first demonstration 
of a real-time BMI (Dennett 1992). He implanted electrodes in the motor cortex of 
patients undergoing neural surgery. The patients advanced a slide projector by pushing a 
button with their hands. These voluntary button presses were preceded by readiness 
potentials in the motor cortex. To create a direct link between the brain and the 
projector, Walter disconnected the button and made cortical potentials advance the 
slides. The patients continued to press the disconnected button, but the control signal 
came directly from the brain. Remarkably, their direct cortical control often worked 
before they initiated hand movements. 

About the same time, a team of National Institutes of Health (NIH) scientists led by 
Karl Frank formulated the goal of building neurally controlled prosthetic devices. Frank 
wrote, "We will be engaged in the development of principles and techniques by which 
information from the nervous system can be used to control external devices such as 
prosthetic devices, communications equipment, teleoperators ... and ultimately perhaps 
even computers" (Frank 1968). The NIH team was able to achieve promising results. In 
1970, team members Humphrey, Schmidt and Thompson simultaneously recorded 3-8 
neurons with five electrodes inserted in the motor cortex of monkeys performing wrist 
flexions and extensions (Humphrey et al. 1970). The recordings were stored on tape. In 
an offline analysis of these data, the researchers were able to extract movement traces 
from the neuronal rates using multiple linear regression. A decade later, Schmidt 
recorded from monkey cortex with a 12-electrode array that stayed implanted for 37 
months (Schmidt 1980). Schmidt’s monkeys learned to move a cursor on a LED display 
by modulating their cortical activity. 

In parallel with this work, pioneering studies on volitional control of single cortical 
neurons were conducted by Ebernhard Fetz at the University of Washington. His 
monkeys voluntarily modulated the activity of single cortical neurons in order to attain a 
particular firing rate (Fetz 1969). 

Research on sensory BMIs started at about the same time as the work on motor BMIs. 
The development of cochlear implants was especially successful (Wilson and Dorman 
2008). This work was pioneered in 1957 by Djourno and Eyriès who developed an 
implant that applied single-channel stimulation to the auditory nerve. The stimulation 
frequency was up to 1 kHz, and their patient eventually was able to detect pitch 
differences and recognize words. The first multichannel cochlear stimulator was 
developed by Blair Simmons in 1964. In the 1970s, William House and Jack Urban 
introduced a carrier frequency of 16 kHz to the stimulation signal. Their work 
eventually resulted in clinical device that received FDA approval. Additionally, Robin 

 313  



COMPUTATIONAL INTELLIGENCE – Vol. II - Brain-Machine Interface - Mikhail Lebedev 

©Encyclopedia of Life Support Systems (EOLSS) 

Michelson’s work contributed to improved implantation methods. Over several decades, 
cochlear implants have improved and have become widely accepted in clinic. More than 
200,000 people have been implanted worldwide with these devices. 

Also in the late 1960s – early 1970s, research has started on sensory BMI for restoration 
of vision. In these early studies conducted by the groups of Brindley and Dobelle 
(Brindley and Lewin 1972; Dobelle et al., 1974), electrical stimulation was applied 
through electrodes placed on the surface of the visual cortex in totally blind individuals. 
The subjects reported phosphens, i.e. appearances of light spots in their visual field. 
Moreover, they were able to recognize simple patterns and letters composed of such 
phosphens. These pioneering studies demonstrated the feasibility of a visual prosthesis 
for the blind. 
 
2.2. Rapid Development and Key Players 
 
In the late 1990s – early 2000s BMI research markedly accelerated, facilitated by 
progress in multielectrode recording methods and computer technologies. Several 
researchers became notable players in the BMI field. 
 
Miguel Nicolelis, John Chapin and their colleagues at Hahnemann University pioneered 
an invasive BMI that converted extracellular activity of neuronal populations recorded 
in rat cortex and thalamus into one-dimensional movements of a robot (Chapin et al. 
1999). 
 
Nicolelis then moved to Duke University where he started BMI research in nonhuman 
primates. He and his colleagues pioneered several BMIs that utilized large-scale 
neuronal activity recorded from multiple cortical areas to control external actuators. 
Aided by these BMIs, monkeys learned to control robot arms that performed reaching 
movements (Wessberg et al. 2000) and reaching and grasping movements (Carmena et 
al. 2003; Lebedev et al. 2005). Nicolelis and his colleagues also pioneered cortical 
microstimulation as a method to provide artificial tactile feedback for a BMI that 
controlled arm reaching (O'Doherty et al. 2011). Furthermore, the Nicolelis laboratory 
extended their BMI approach to bipedal locomotion (Fitzsimmons et al. 2009). 
 
Philip Kennedy is another prominent figure in the BMI field. He and his colleagues 
implanted an ALS patient with a neurotrophic electrode that induces growth of 
myelinated fibers into the recording tip. The patient was able to achieve an on/off 
control with neural signals (Kennedy and Bakay 1998). 
 
John Donoghue heads a BMI research group at Brown University. The group conducts 
invasive-BMI experiments in monkeys and in human patients. They were the first to 
implant paralyzed patients with multielectrode arrays in the motor cortex. These human 
studies demonstrated real-time BMI control of a computer cursor (Hochberg et al. 2006) 
and a robotic manipulator (Hochberg et al. 2012). 
 
Andrew Schwartz, first at Arizona State University and then at the University of 
Pittsburg, developed invasive BMIs for the control of three-dimensional movements of 
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cursors (Taylor et al. 2002) and robots (Velliste et al. 2009). His laboratory also 
develops invasive BMIs for humans (Collinger et al. 2013). 
 
The other notable players in the invasive BMI research are Richard Andersen at 
California Institute of Technology, Krishna Shenoy at Stanford University and Elon 
Vaadia at the University of Jerusalem. 
 
In parallel with the development of invasive BMIs, noninvasive BMIs (often called 
BCIs) achieved impressive progress since the late 1990s. Many practical applications 
have been developed for assisting disabled patients in using a computer, controlling a 
wheelchair and restoring mobility of paralyzed limbs. Among the leading researchers in 
this field are Niels Birbaumer (University of Tübingen), Gert Pfurtscheller (Graz 
University of Technology), Theresa Vaughan (Wadsworth Center), Klaus-Robert 
Müller (Fraunhofer Institute for Intelligent Analysis and Information Systems), Gerwin 
Schalk (Wadsworth Center), Christa Neuper (University of Graz), Andrea Kübler 
(Eberhard-Karls-University), Jonathan Walpaw (Wadsworth Center) and Jose Millan 
(EPFL). 
 
2.3. Commercialization 
 
Several companies have emerged that commercialize BMI technology. Philip Kennedy 
founded Neural Signals, which is a research company focused on the development of 
communication devices for paralyzed patients. John Donoghue and his colleagues 
founded Cyberkinetics, a company that developed BMI components and marketed 
recording equipment. Cyberkinetics was then sold to Braingate. William Dobelle 
founded Avery Biomedical Devices to develop visual implants, but this work slowed 
down after his death. Several companies develop EEG-based BMIs: Guger 
Technologies, Interactive Productline, NeuroSky, Emotiv Systems, Starlab and OCZ 
Technology. Two major manufactures of cochlear implants are Cochlear Corporation 
and Advanced Bionics Corporation.  

3. Information Encoding in the Brain 

3.1. Factors that Allow Decoding of Neural Signals 

Notwithstanding many remarkable advances made by neuroscientists, we still have a 
poor understanding of brain computations that underlie motor control, sensory 
processing and cognition. Luckily for BMI scientists, this poor understanding does not 
prevent them from trying and succeeding in extraction of useful information from the 
brain. 

Numerous neurophysiological studies have shown that individual neurons and their 
populations modulate their discharge rates when the brain processes information. Even 
though the exact functional role of these neural activities is unknown in many cases, 
BMI researchers still can develop algorithms that discover correlations between neural 
signals and behavioral parameters of interest and employ these correlations to extract 
behavioral parameters from brain activity. 
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