
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

FUNCTIONAL AND LOGIC PROGRAMMING

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz), Johannes Kepler University,
A-4040 Linz, Austria, Wolfgang.Schreiner@risc.uni-linz.ac.at.

Keywords: declarative programming, mathematical functions, Haskell, ML, referential
transparency, term reduction, strict evaluation, lazy evaluation, higher-order functions,
program skeletons, program transformation, reasoning, polymorphism, functors, generic
programming, parallel execution, logic formulas, Horn clauses, automated theorem
proving, Prolog, SLD-resolution, unification, AND/OR tree, constraint solving,
constraint logic programming, functional logic programming, natural language
processing, databases, expert systems, computer algebra.

Contents

1. Introduction
2. Functional Programming
2.1 Mathematical Foundations
2.2 Programming Model
2.3 Evaluation Strategies
2.4 Higher Order Functions
2.5 Parallel Execution
2.6 Type Systems
2.7 Implementation Issues
3. Logic Programming
3.1 Logical Foundations
3.2. Programming Model
3.3 Inference Strategy
3.4 Extra-Logical Features
3.5 Parallel Execution
4. Refinement and Convergence
4.1 Constraint Logic Programming
4.2 Functional Logic Programming
5. Impacts on Computer Science
Glossary
Bibliography

Summary

Most programming languages are models of the underlying machine, which has the
advantage of a rather direct translation of a program statement to a sequence of machine
instructions. Some languages, however, are based on models that are derived from
mathematical theories, which has the advantages of a more concise description of a
program and of a more natural form of reasoning and transformation. In functional
languages, this basis is the concept of a mathematical function which maps a given
argument values to some result value. A program is a mathematical term which is
evaluated to a normal form by replacing each occurrence of a function symbol by its

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

corresponding definition. On the other hand, logic languages are built upon the concept
of a predicate that relates certain values to each other. A program is a logic formula in
which an inference mechanism finds substitutions for the variables such that the formula
becomes true. The efficient execution of functional and logic languages has made great
progress during the last two decades; further developments have extended the
expressiveness of the programming models (constraint logic programming) and unified
them in a common framework (functional logic programming). Powerful type systems
have been developed which allow to write in a safe way programs that may be applied
to a variety of application domains (generic programming). The ideas exemplified by
functional and logic languages have essentially influenced the design of other
programming languages.

1. Introduction

Functional and logic programming languages are also called declarative languages;
programs in these languages are said to describe (declaratively) what to do and not
(operationally) how to do it. While this statement may be questioned, declarative
languages have certainly their basis in formal models with properties that make
programs particularly amenable to precise reasoning and correctness-preserving
transformations. This is in contrast to imperative languages which are based on models
of the underlying machine; programs written in imperative languages can be thus more
directly compiled to efficient machine code, but reasoning and program transformations
are comparatively difficult (see Imperative Programming).

Declarative programming languages have been developed since the 1970s, but their
roots can be traced to the 1930s when mathematicians and logicians began to study the
theory of computability. Concise formal calculi were developed in which (supposedly)
any calculation can be expressed that a machine can perform and that thus should
already suffice as linguistic frameworks for computer programming (Church’s thesis,
see Models of Computation). For instance, although the -calculus developed by
Alonzo Church consists of just three kinds of expressions and a simple reduction rule, it
is believed to be capable of performing every possible computation; a subset of the
programming language LISP developed by McCarthy in the late 1950s can be
considered as an implementation of this calculus. Nevertheless, it was at that time not
believed that a practically useable programming language could be in its entirety based
on a simple formal model.

However, in the late 1960s and early 1970s several ideas arose how to write programs in
a purely declarative style and still have them executed with reasonable efficiency.
Depending on the formal theory, two major schools of thought have subsequently
emerged: the functional programming community has focused on the concept of the
mathematical function as a value-mapping entity; since such a function is typically
defined by a set of equations, this yields a style of “programming with recursive
equations” (the title of an early paper). The task of the programmer is construct a
wanted result value from the given argument values by some basic constructs with a
simple mathematical interpretation; reasoning about program correctness thus is
immediately reduced to conventional mathematical reasoning and program
transformations can be performed like arithmetic calculations. While early functional

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

languages were comparatively slow, especially in the second half of the 1980s
compilation techniques were developed that nowadays allow very efficient execution.
Functional languages have also considerably contributed to the theory of type systems
by concepts such as polymorphic functions (functions applicable to arguments of
different types) and functors (parameterized program modules that take modules as
arguments and return modules as results) which yielded the idea of generic
programming (nowadays en vogue in object-oriented languages). The myriad of
functional languages developed in the 1980s has today crystalized into two major
representatives: ML (for Meta-Language) developed at the University of Edinburgh in
the course of a project in automated theorem proving and Haskell (named after the
logician Haskell Curry) which was developed by a joint initiative of various research
groups in Europe and the US.

Logic programming is an outcome of research in automated theorem proving. In 1965,
Robinson published the resolution method as an efficient decision procedure for logic
formulas written in a subset of first-order predicate logic called Horn clause logic.
While not every logic formula can be expressed in this language, it is sufficiently rich to
serve as the basis of a rule-based programming style where the task of the programmer
is to construct a relation between values: those given by the user are considered as input
from which the system computes the other ones as output. In the early 1970s, Kowalski
elaborated the theory of logic programming with Colmerauer producing the first
implementation of the programming language Prolog (Programming in Logic). The
language became an instant success and triggered the world-wide interest of many
institutions that developed various dialects and (also commercial) implementations. A
major break-through was achieved in the second half of the 1980s when the Japanese
Research Organization ICOT chose logic programming as the basis of their “5th
Generation Computers” project. While this initiative failed to produce a new basis for
computer architecture, it helped to widely disseminate expertise in logic programming.
In the 1990s, research in logic programming focused on making the basic principle
more expressive by including constraints (equations and inequalities) over arithmetic
domains, which gave rise to constraint logic programming. The resolution mechanism
was extended by methods for “constraint solving” which brought mathematics in closer
contact to logic programming.

From the very beginning, both functional and logic programming languages have been
considered for parallel programming, i.e., the solution of a problem by concurrent
execution of multiple tasks on multiprocessors and computer networks. In contrast to
imperative languages, declarative languages do not impose a predefined order of
execution steps such that a variety of concurrent evaluation/inference strategies can be
devised. While efficient automatic parallelization is still out of reach, parallelization
annotations in “para-functional” languages and “Guarded Horn Clause Languages”
allow with comparatively little effort to write parallel programs in a declarative style.

In the 1990s, new developments have started to blur the distinction between functional
programming and logic programming leading to functional-logic programming: here a
logic formula also has a return value or, vice versa, a function call is also a goal which
has to be satisfied by constructing term substitutions for the variables. A new
mechanism called “narrowing” unifies the execution strategies “term reduction” for

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

functional programming and “resolution” for logic programming and thus enhances the
expressiveness of the declarative style of programming. While research currently
focuses more on the theoretical aspects, the next decade will certainly see also further
progress on more efficient compilation strategies for this kind of languages. While
numerous applications have been developed in declarative languages, their main impact
on computer science is an indirect one: the ideas and techniques elaborated in functional
and logic programming have found their way to conventional languages, especially to
object-oriented languages such as C++ and Java and to the languages used in computer
algebra systems such as Mathematica.

2. Functional Programming

2.1 Mathematical Foundations

A mathematical function. f : A B→ is a mapping f from a set of objects A called the
domain to a target set B called the range such that for every element a of A the term f(a)
(the application of f to a) uniquely denotes an object of B. Typically f is defined by an
equation ()f x T= where T is a term in which only x occurs as a free variable; the result
of f(a) is determined by evaluating T after the formal parameter x has been replaced by
actual argument a. For instance,

()
square : Z Z

square x x x∗
→

=

defines a function square on the set Z of integer numbers such that the application
square(2) denotes the result 2*2 = 4. A function may also take multiple parameters, e.g.
defining

() () ()
squarediff : Z Z Z

squarediff a, b a b a b∗

× →

= + −

yields squarediff(3, 2)=(3 + 2)*(3 - 2)=5*1 = 5. We may construct the defining term
also hierarchically with the help of local definitions:

()
squarediff : Z Z Z

squarediff a, b c d where
c a b
d a b

∗

× →

=

= +
= −

A function may be defined by multiple terms guarded by conditions on the parameters,
e.g.

()

abs : Z Z
x if x 0

abs x
x otherwise

→

− <⎧
= ⎨
⎩

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

defines the absolute value of an integer number. If the condition can be expressed by a
syntactic pattern of the arguments, then a function definition may consist of multiple
equations, e.g.

() ()
[]() []
()

tail : List A List A

tail

tail x : xs xs

→

=

=

defines a function tail on lists of elements from any set A: when tail is applied to an
empty list, it returns the empty list; when it is applied to a list with first element x and
rest list xs, it returns xs.

A function may also refer to itself recursively on the right hand side of the defining
equation, e.g.

()
[]()
() ()

sum : List Z Z

sum 0

sum x : xs x sum xs

→

=

= +

defines a function sum that when applied to a list of integer numbers returns the sum of
the list elements, e.g. sum([1, 2, 3]) = 1 + sum([2, 3]) = 1 + (2 + sum([3])) = 1+ (2 + (3 +
sum([]))) = 1 + (2 + (3 + 0))) = 6.

Given functions f : A B→ and g : B C→ we can create the composition f og : A C→
such that for every a in A we have ()() ()()f og a g f a= . For instance, defining

listsquare sum o square= , we get []listsquare 1, 2,3 36= . Thus we may construct in a
modular way from simple functions more complex ones.

2.2 Programming Model

In a functional programming language like Haskell or ML, the definition of a program
function closely resembles a mathematical function definition. For instance, we can
define in Haskell

square :: Int Int

square x = x x∗
− >

such that the term (square 2) evaluates to 4. Likewise we can define

*

squarediff :: Int Int Int

squarediff a b = c d where
c = a + b
d = a - b

− > − >

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

abs :: Int Int
abs x x 0 x

otherwise x

− >

< = −

=

[] []

[] []
()

tail :: a a

tail

tail x : xs xs

− >

=

=

[]
[]
() ()

sum :: Int Int

sum 0

sum x : xs 1 sum xs

− >

=

= +

such that e.g. the term (sum [1, 2, 3]) evaluates to 6. It is illustrative to compare above
definition of sum to a corresponding definition in an imperative programming language
(see. Imperative Programming):

[]()

[]

fun sum a : Array Int , n : Int : Int

var s, i : Int
s : 0
for i : 1 to n do
s : s a i
retrun s
end

=
=

= +

In an imperative language, a program is a sequence of commands (or statements) that
operate on a hidden state, namely the computer store holding the current values of the
program variables (s, i). Program execution proceeds in a sequence of assignments
which start in some initial state and iteratively modify this state by updating the variable
values until some final state is reached which denotes the result of the computation

[]()n
i 1s a i , i n 1
−

= = +∑ .

All imperative languages (and also the object-oriented ones, (see Object-oriented
Programming) reflect this state-oriented view which has its basis in the von Neumann
model of computation which itself represents an abstraction of the underlying hardware
(see Processors).

On the contrary, in a functional language a program is a mathematical term (or
expression) and program execution proceeds in a sequence of reduction steps: in each
step, we select a subterm denoting a function application (the redex) and replace it by
the defining term after having substituted the formal parameters by the actual
arguments. The reduction process terminates when we yield a term that does not contain
any more redex (a normal form).

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

A term may have more than one potential redex, e.g. in squarediff(sum(a), sum(b))each
of the underlined function symbols denotes the head of a term that may be selected for
reduction. However, no matter, which selection strategy we apply, if a reduction
sequence yields a normal form, this normal form is uniquely determined. This
fundamental feature is a consequence of the Church-Rosser Theorem in λ-calculus
which forms the theoretical basis of functional programming (see Models of
Computation).

As a consequence, functional programming languages have the following characteristics
that distinguish them from imperative or object-oriented languages:

 Referential transparency. A functional program is an expression that can be
considered as a mathematical term: its result is a unique value that only depends
on the results of its subexpressions. Consequently, if the program is executed
multiple times, it always returns the same result. Conversely, the only effect of
executing a functional program is returning a result: e.g., in program f(g(a),h(b))
the execution of g(a) cannot have a side-effect that affects the result of h(b).
Furthermore, if we define a name x = T in a functional program, then any
occurrence of x in the scope of the definition may be replaced by T without
changing the overall result.

All this is not true for imperative languages: here the definition of a program function
may refer to global data that may be destructively updated between calls; actually the
function itself may update these data such that two subsequent identical applications
give different results.

 No destructive assignments. A (purely) functional programming language does
not have an assignment statement that updates the value of a variable. A
"variable" in a functional language is actually a constant i.e. a name that is
bound by a definition to a value; this binding is immutable, i.e., it cannot be
changed in the scope of the definition (single assignment property).

This restriction has a major consequence on the functional style of programming: while
it is in imperative programming common to have a global data structure that is
iteratively updated in the course of computation, in functional programming always a
new version of the structure has to be constructed (nevertheless the new structure may
share components with the old one or the system may automatically find that the old
structure can be safely updated in place).

-
-
-

TO ACCESS ALL THE 28 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-45-05-04

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner

©Encyclopedia of Life Support Systems (EOLSS)

Bibliography

Apt, K. R. (1996). From Logic Programming to Prolog. Englewood Cliffs: Prentice Hall. [An
introduction to logic programming in general and Prolog in special.]

Bird, R. (1998). Introduction to Functional Programming Using Haskell. 2nd edition, Englewood Cliffs:
Prentice Hall. [This book gives a good overview on the functional school of programming using the
Haskell language.]

Bowen, J.P. (2000). Logic Programming. Web page http://archive.comlab.ox.ac.uk/logic-prog.html.[The
best starting point for a Web search, see also the Usenet news group comp.lang.prolog.]

Clocksin, W.F. and Mellish, C.S. (1994) Programming in Prolog. 4th edition, Berlin, Springer.

[This is the classical introduction to Prolog programming.]

Field A. J. and Harrison P. G. (1988) Functional Programming. Wokingham: Addison-Wesley. [This is a
comprehensive book which presents functional programming in general, the implementation of functional
languages, and the formal manipulation of functional programs for optimization.]

Hammond, K. and Michelson, G. (1999) Research Directions in Parallel Functional Programming.
Berlin: Springer. [A state of the art survey on all aspects of parallel functional programming.]

Hartel, P. and Muller, H. (1997). Functional C. Wokingham: Addison-Wesley. [This shows that
functional programming is not bound to a functional language by using the imperative language C.]

Hutton, G. (2000) Frequently Asked Questions for comp.lang.functional. Usenet news group. Also on
http://www.cs.nott.ac.uk/~gmh/faq.html [This is the best starting point for a Web search of online
materials on functional programming.]

Marriot, K. and Stuckey, P.J. (1999) Programming with Constraints: An Introduction. Boston, MIT Press.
[An introduction to constraint programming, in particular constraint logic programming.]

Masahiko, S. and Toyama, Y. (1998) Functional and Logic Programming. World Scientific Publisher.
[Discusses issues on functional and logic programming, and the integration of the two.]

Paulson, L.C (1996). ML for the Working Programmer. Cambridge: Cambridge University Press. [This is
a practical introduction to the functional language ML.]

Peyton Jones, S. (1987). The Implementation of Functional Programming Languages. Englewood Cliffs:
Prentice Hall. [This is still the most comprehensive overview on the implementation of lazy programming
languages.]

Shapiro, E. (1988) Concurrent Prolog: Collected Papers. Volumes I+II. Boston, MIT Press. [This is a
collection of research papers on parallel logic programming with a GHC language.]

Sterling, L. and Shapiro E. (1994) The Art of Prolog: Advanced Programming Techniques. 2nd edition,
Boston: MIT Press. [A comprehensive description from logical foundations to advanced programming
techniques; less suitable for a quick overview but essential for serious programming.]

