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Summary 
 
Most programming languages are models of the underlying machine, which has the 
advantage of a rather direct translation of a program statement to a sequence of machine 
instructions. Some languages, however, are based on models that are derived from 
mathematical theories, which has the advantages of a more concise description of a 
program and of a more natural form of reasoning and transformation. In functional 
languages, this basis is the concept of a mathematical function which maps a given 
argument values to some result value. A program is a mathematical term which is 
evaluated to a normal form by replacing each occurrence of a function symbol by its 
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corresponding definition. On the other hand, logic languages are built upon the concept 
of a predicate that relates certain values to each other. A program is a logic formula in 
which an inference mechanism finds substitutions for the variables such that the formula 
becomes true. The efficient execution of functional and logic languages has made great 
progress during the last two decades; further developments have extended the 
expressiveness of the programming models (constraint logic programming) and unified 
them in a common framework (functional logic programming). Powerful type systems 
have been developed which allow to write in a safe way programs that may be applied 
to a variety of application domains (generic programming). The ideas exemplified by 
functional and logic languages have essentially influenced the design of other 
programming languages. 
 
1. Introduction 
 
Functional and logic programming languages are also called declarative languages; 
programs in these languages are said to describe (declaratively) what to do and not 
(operationally) how to do it. While this statement may be questioned, declarative 
languages have certainly their basis in formal models with properties that make 
programs particularly amenable to precise reasoning and correctness-preserving 
transformations. This is in contrast to imperative languages which are based on models 
of the underlying machine; programs written in imperative languages can be thus more 
directly compiled to efficient machine code, but reasoning and program transformations 
are comparatively difficult (see   Imperative Programming). 
 
Declarative programming languages have been developed since the 1970s, but their 
roots can be traced to the 1930s when mathematicians and logicians began to study the 
theory of computability. Concise formal calculi were developed in which (supposedly) 
any calculation can be expressed that a machine can perform and that thus should 
already suffice as linguistic frameworks for computer programming (Church’s thesis, 
see   Models of Computation). For instance, although the -calculus developed by 
Alonzo Church consists of just three kinds of expressions and a simple reduction rule, it 
is believed to be capable of performing every possible computation; a subset of the 
programming language LISP developed by McCarthy in the late 1950s can be 
considered as an implementation of this calculus. Nevertheless, it was at that time not 
believed that a practically useable programming language could be in its entirety based 
on a simple formal model. 
 
However, in the late 1960s and early 1970s several ideas arose how to write programs in 
a purely declarative style and still have them executed with reasonable efficiency. 
Depending on the formal theory, two major schools of  thought have subsequently 
emerged: the functional programming community has focused on the concept of the 
mathematical function as a value-mapping entity; since such a function is typically 
defined by a set of equations, this yields a style of “programming with recursive 
equations” (the title of an early paper). The task of the programmer is construct a 
wanted result value from the given argument values by some basic constructs with a 
simple mathematical interpretation; reasoning about program correctness thus is 
immediately reduced to conventional mathematical reasoning and program 
transformations can be performed like arithmetic calculations. While early functional 
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languages were comparatively slow, especially in the second half of the 1980s 
compilation techniques were developed that nowadays allow very efficient execution. 
Functional languages have also considerably contributed to the theory of type systems 
by concepts such as polymorphic functions (functions applicable to arguments of 
different types) and functors (parameterized program modules that take modules as 
arguments and return modules as results) which yielded the idea of generic 
programming (nowadays en vogue in object-oriented languages). The myriad of 
functional languages developed in the 1980s has today crystalized into two major 
representatives: ML (for Meta-Language) developed at the University of Edinburgh in 
the course of a project in automated theorem proving and Haskell (named after the 
logician Haskell Curry) which was developed by a joint initiative of various research 
groups in Europe and the US. 
 
Logic programming is an outcome of research in automated theorem proving. In 1965, 
Robinson published the resolution method as an efficient decision procedure for logic 
formulas written in a subset of first-order predicate logic called Horn clause logic. 
While not every logic formula can be expressed in this language, it is sufficiently rich to 
serve as the basis of a rule-based programming style where the task of the programmer 
is to construct a relation between values: those given by the user are considered as input 
from which the system computes the other ones as output. In the early 1970s, Kowalski 
elaborated the theory of logic programming with Colmerauer producing the first 
implementation of the programming language Prolog (Programming in Logic). The 
language became an instant success and triggered the world-wide interest of many 
institutions that developed various dialects and (also commercial) implementations. A 
major break-through was achieved in the second half of the 1980s when the Japanese 
Research Organization ICOT chose logic programming as the basis of their “5th 
Generation Computers” project. While this initiative failed to produce a new basis for 
computer architecture, it helped to widely disseminate expertise in logic programming. 
In the 1990s, research in logic programming focused on making the basic principle 
more expressive by including constraints (equations and inequalities) over arithmetic 
domains, which gave rise to constraint logic programming. The resolution mechanism 
was extended by methods for “constraint solving” which brought mathematics in closer 
contact to logic programming. 
 
From the very beginning, both functional and logic programming languages have been 
considered for  parallel programming, i.e., the solution of a problem by concurrent 
execution of multiple tasks on multiprocessors and computer networks. In contrast to 
imperative languages, declarative languages do not impose a predefined order of 
execution steps such that a variety of concurrent evaluation/inference strategies can be 
devised. While efficient automatic parallelization is still out of reach, parallelization 
annotations in “para-functional” languages and “Guarded Horn Clause Languages” 
allow with comparatively little effort to write parallel programs in a declarative style. 
 
In the 1990s, new developments have started to blur the distinction between functional 
programming and logic programming leading to functional-logic programming: here a 
logic formula also has a return value or, vice versa, a function call is also a goal which 
has to be satisfied by constructing term substitutions for the variables. A new 
mechanism called “narrowing” unifies the execution strategies “term reduction” for 
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functional programming and “resolution” for logic programming and thus enhances the 
expressiveness of the declarative style of programming. While research currently 
focuses more on the theoretical aspects, the next decade will certainly see also further 
progress on more efficient compilation strategies for this kind of languages. While 
numerous applications have been developed in declarative languages, their main impact 
on computer science is an indirect one: the ideas and techniques elaborated in functional 
and logic programming have found their way to conventional languages, especially to 
object-oriented languages such as C++ and Java and to the languages used in computer 
algebra systems such as Mathematica. 
 
2. Functional Programming  
 
2.1 Mathematical Foundations 
 
A mathematical function. f : A B→  is a mapping f from a set of objects A called the 
domain to a target set B called the range such that for every element a of A the term f(a) 
(the application of f to a) uniquely denotes an object of B. Typically f is defined by an 
equation ( )f x T=  where T is a term in which only x occurs as a free variable; the result 
of f(a) is determined by evaluating T after the formal parameter x has been replaced by 
actual argument a. For instance, 
 

( )
square : Z Z

square x x x∗
→

=
 

 
defines a function square on the set Z of integer numbers such that the application 
square(2) denotes the result 2*2 = 4. A function may also take multiple parameters, e.g. 
defining 
 

( ) ( ) ( )
squarediff : Z Z Z

squarediff a, b a b a b∗

× →

= + −
 

 
yields squarediff(3, 2)=(3 + 2)*(3 - 2)=5*1 = 5. We may construct the defining term 
also hierarchically with the help of local definitions: 
 

( )
squarediff : Z Z Z

squarediff a, b c d where
c a b
d a b

∗

× →

=

= +
= −

 

 
A function may be defined by multiple terms guarded by conditions on the parameters, 
e.g. 

( )

abs : Z Z
x if x 0

abs x
x otherwise

→

− <⎧
= ⎨
⎩
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defines the absolute value of an integer number. If the condition can be expressed by a 
syntactic pattern of the arguments, then a function definition may consist of multiple 
equations, e.g. 
 

( ) ( )
[ ]( ) [ ]
( )

tail : List A List A

tail

tail x : xs xs

→

=

=

 

 
defines a function tail on lists of elements from any set A: when tail is applied to an 
empty list, it returns the empty list; when it is applied to a list with first element x and 
rest list xs, it returns xs. 
 
A function may also refer to itself recursively on the right hand side of the defining 
equation, e.g. 
 

( )
[ ]( )
( ) ( )

sum : List Z Z

sum 0

sum x : xs x sum xs

→

=

= +

 

 
defines a function sum that when applied to a list of integer numbers returns the sum of 
the list elements, e.g. sum([1, 2, 3]) = 1 + sum([2, 3]) = 1 + (2 + sum([3])) = 1+ (2 + (3 + 
sum([]))) = 1 + (2 + (3 + 0))) = 6. 
 
Given functions f : A B→  and g : B C→  we can create the composition f og : A C→  
such that for every a in A we have ( )( ) ( )( )f og a g f a= . For instance, defining 

listsquare sum o square= , we get [ ]listsquare 1, 2,3 36= . Thus we may construct in a 
modular way from simple functions more complex ones. 
 
2.2 Programming Model 
 
In a functional programming language like Haskell or ML, the definition of a program 
function closely resembles a mathematical function definition. For instance, we can 
define in Haskell 
 
square :: Int Int

square x = x x∗
− >

 

 
such that the term (square 2) evaluates to 4. Likewise we can define   

*

squarediff :: Int Int Int

squarediff a b = c d where
c = a + b
d = a - b

− > − >
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abs :: Int Int
abs x x 0 x

otherwise x

− >

< = −

=

 

 
[ ] [ ]

[ ] [ ]
( )

tail :: a a

tail

tail x : xs xs

− >

=

=

 

[ ]
[ ]
( ) ( )

sum :: Int Int

sum 0

sum x : xs 1 sum xs

− >

=

= +

 

 
such that e.g. the term (sum [1, 2, 3]) evaluates to 6. It is illustrative to compare above 
definition of sum to a corresponding definition in an imperative programming language 
(see.  Imperative Programming): 
 

[ ]( )

[ ]

fun sum a : Array Int , n : Int : Int

var s, i : Int
s : 0
for i : 1 to n do
s : s a i
retrun s
end

=
=

= +

 

 
In an imperative language, a program is a sequence of commands (or statements) that 
operate on a hidden state, namely the computer store holding the current values of the 
program variables (s, i). Program execution proceeds in a sequence of assignments 
which start in some initial state and iteratively modify this state by updating the variable 
values until some final state is reached which denotes the result of the computation 

[ ]( )n
i 1s a i , i n 1
−

= = +∑ .  

 
All imperative languages (and also the object-oriented ones, (see Object-oriented 
Programming) reflect this state-oriented view which has its basis in the von Neumann 
model of computation which itself represents an abstraction of the underlying hardware 
(see   Processors). 
 
On the contrary, in a functional language a program is a mathematical term (or  
expression) and program execution proceeds in a sequence of reduction steps: in each 
step, we select a subterm denoting a function application (the redex) and replace it by 
the defining term after having substituted the formal parameters by the actual 
arguments. The reduction process terminates when we yield a term that does not contain 
any more redex (a normal form). 
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A term may have more than one potential redex, e.g. in squarediff(sum(a), sum(b))each 
of the underlined function symbols denotes the head of a term that may be selected for 
reduction. However, no matter, which selection strategy we apply, if a reduction 
sequence yields a normal form, this normal form is uniquely determined. This 
fundamental feature is a consequence of the Church-Rosser Theorem in λ-calculus 
which forms the theoretical basis of functional programming (see  Models of 
Computation). 
 
As a consequence, functional programming languages have the following characteristics 
that distinguish them from imperative or object-oriented languages: 

 Referential transparency. A functional program is an expression that can be 
considered as a mathematical term: its result is a unique value that only depends 
on the results of its subexpressions. Consequently, if the program is executed 
multiple times, it always returns the same result. Conversely, the only effect of 
executing a functional program is returning a result: e.g., in program f(g(a),h(b)) 
the execution of g(a) cannot have a side-effect that affects the result of h(b). 
Furthermore, if we define a name x = T in a functional program, then any 
occurrence of x in the scope of the definition may be replaced by T without 
changing the overall result.  

 
All this is not true for imperative languages: here the definition of a program function 
may refer to global data that may be destructively updated between calls; actually the 
function itself may update these data such that two subsequent identical applications 
give different results. 
 

 No destructive assignments. A (purely) functional programming language does 
not have an assignment statement that updates the value of a variable. A 
"variable" in a functional language is actually a constant i.e. a name that is 
bound by a definition to a value; this binding is immutable, i.e., it cannot be 
changed in the scope of the definition (single assignment property). 

 
This restriction has a major consequence on the functional style of programming: while 
it is in imperative programming common to have a global data structure that is 
iteratively updated in the course of computation, in functional programming always a 
new version of the structure has to be constructed (nevertheless the new structure may 
share components with the old one or the system may automatically find that the old 
structure can be safely updated in place). 
 
 
- 
- 
- 
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