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Summary 
 
In this chapter some dynamical systems concepts of relevance to Systems Dynamics are 
discussed. First of all, the concept of equilibrium of a dynamical system is associated 
with the attractors of the system, which characterize the long-term behavior. Then it is 
emphasized that a nonlinear dynamical system can display several attractors. This leads 
to the need for an overall perspective on all such long-term behavior. This global 
perspective supplies a valuable guide to System Dynamics simulation. Concepts and 
tools taken from bifurcation theory are of a great help in this task. The archetypes 
supplied by this theory permit us to organize the different aspects of long-term behavior 
in a single framework. The chapter closes with the application of the time-scale 
decomposition to apply these analysis tools to systems of higher dimension. 
 
1. Introduction 
 
System Dynamics is both a modeling and a simulation methodology. As a modeling 
technique it focuses on the complex structure of the aspect of reality being modeled. 
That complexity is due to multiloop feedback substructures, nonlinearities and delays. 
The consideration of these characteristics leads to mathematical models that are quite 
difficult to deal with using analytical tools. In this way some dilemma is produced 
between mathematical analysis and computer modeling. Researchers in System 
Dynamics have chosen to do the analysis with the use of the computer. Nevertheless, 
mathematical analysis yields benefits for System Dynamics that should not be 
disregarded as they can help to better understand the behavior of a model. If a 
mathematical language is used, the consequences of that usage ought to be fully 
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maintained. A System Dynamics model is a mathematical object and, as such, it 
deserves mathematical analysis. 
 
2. Equilibrium Points 
 
Any System Dynamics model is a mathematical object known as dynamical system, that 
is, it can be formulated as  
 

( ),x f x=          (1) 
 
where nx∈IR  is a vector of the state of the system (usually called levels in System 
Dynamics), x  represents the derivative of x with respect to time and f is a possibly 
nonlinear function. Normally, the function f is highly involved as it represents the whole 
model, but, at least conceptually, a model can be thought as a mathematical object of the 
form (1). 
 
The equilibrium points (or simply the equilibria) of a model like (1) are defined as the 
values ex  of x for which if, at a specific time 0t , ex x=  then x will remain unchanged 
for all 0t t> . This implies that all the model variables will remain constant and, 
therefore, 0x = . This condition can be used to obtain the equilibrium points of a 
system. 
 
As will be seen later, the number and values of the equilibria of a system play an 
important role in the behavior of that system. An equilibrium point ex  is said to be 
stable when initial conditions close to that point produce trajectories (time evolutions of 
x) which approach the equilibrium. On the contrary, if these trajectories move away 
from ex , the equilibrium is unstable. 
 
Any dynamical system may have no, one or several equilibrium points, each of which 
may either be stable or unstable. A plain mechanical example is a simple pendulum. If 
the pendulum is at the downward position, the system will remain there forever, and 
thus, the downward position is an equilibrium point. Obviously, this equilibrium is 
stable (if friction is considered). Likewise, it is easy to see that the upward position is an 
unstable equilibrium.  
 

 
 

Figure 1: Flow diagram of a population model. 
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Figure 2: Graph of ( )f x  for 1 1
3 2,δ δ= =  and 1δ = . 

 
Another example, more related to System Dynamics, and which will be used below is 
the following (see Figure 1). Consider a population model as follows: 
 

( ) ( ) , 0,x b x d x x= − >        (2) 
 
where x represents the number of inhabitants in a certain region; ( )b x  stands for the 
birth rate and ( )d x  is the death rate. Assume that the death rate is proportional to the 
population, i.e. ( )d x mx= . For the birth rate, a nonlinear dependence on the population, 
namely ( ) ( )b x nx f x= , is assumed, where the function f is supposed to have a 
qualitative “hump shape”, increasing for low values of x and later decreasing. The 
reason for this is that small populations reproduce with more difficulty and very large 
populations may have resource limitations. Therefore, there will be a higher birth rate 
for medium-sized populations. For example, function f could be of the form: 
 

21( ) 1 , (0,1]xf x xδ δ
δ δ
−⎛ ⎞= + − ∈⎜ ⎟

⎝ ⎠
, 
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which is represented in Figure 2 for several values of δ. In Figure 3 a more detailed flow 
diagram of the model is presented. 
 
This model usually shows a logistic growth as is shown in Figure 2. System Dynamics 
includes the archetype known as limits to growth, which shows this kind of growth. This 
methodology allows an interpretation in which this process is the result of the 
interaction of a positive feedback loop, which is responsible for the initial growth, and a 
negative feedback loop, to which the final stabilization can be attributed. Throughout 
the process, there is a change in loop dominance. So, positive feedback loop domination 
in the initial phase gives way to the negative feedback loop in the final phase. 
 

 
 

Figure 3: System dynamics stock-flow diagram of a specific population model. 
 

 
 

Figure 4: Logistic growth curve. 
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Figure 5: Evolution of x for several values of x(0) 
 
This change of loop dominance is associated with nonlinearities in the structure of the 
model. These nonlinearities, under certain circumstances (for certain parameter values 
of the model), can cause a bimodal behavior pattern in which there are two attractors, 
which correspond to long-term behavior defined, in one case, by logistic growth of the 
population and, in the other, by its decay and extinction. 
 
- 
- 
- 
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