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Summary 
 
Over the past few decades the extremes at which life thrives has continued to challenge 
our understanding of biochemistry, biology and evolution. As more new extremophiles 
are brought into laboratory culture, they have provided a multitude of new potential 
applications for biotechnology.  Furthermore, more recently, innovative culturing 
approaches, environmental genome sequencing and whole genome sequencing have 
provided new opportunities for biotechnological exploration of extremophiles. 
 
1. Introduction 
 
Organisms that live at the extremes of pH (>pH 8.5,< pH 5.0), temperature (>45°C, 
<15°C), pressure (>500 atm), salinity (>1.0M NaCl) and in high concentrations of 
recalcitrant substances or heavy metals (extremophiles) represent one of the last 
frontiers for biotechnological and industrial discovery. As we learn more about the 
extremes at which life can survive and thrive, more of these extremophiles are brought 
into culture and their genomes sequenced. In many cases, biotechnological applications 
of extremophiles and their biomolecules (e.g. enzymes) have been the driving force in 
both academic and industrial research of these organisms. Extremophiles and 
extremozymes occupy an important place in the multibillion dollars environmental 
biotechnology industry, with applications spanning agricultural, biomedical and 
industrial sectors. Due to the highly competitive nature of industrial R&D, in most cases 
the path from an extremophile to a successful commercial application is not documented 
in peer reviewed scientific publications and can be partially followed through patents, 
biotechnology meetings and company websites. In this review, we will consider a few 
new developments as several recent reviews focus on the biotechnological applications 
of extremophiles  
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2.  Extremophiles and Biomolecules. 
 
The most direct application of extremophiles in biotechnological processes involves the 
organisms themselves.  Among the most established is biomining (bioleaching), in 
which microbial consortia are used to extract metals such as copper, cobalt, gold and 
uranium from ores. This has received considerable interest lately, propelled by 
developments in microbial isolation and the application of genomic approaches for 
studying the individual organisms and their community . These processes involve iron 
or sulphur oxidizing acidophilic microorganisms adapted to different temperature 
ranges, from mesophiles (bacteria such as Acidithiobacillus, Leptospirillum and the 
archaea Ferroplasma) to thermophiles (archaea from the genera Sulfolobus, 
Metallospharea and Acidianus) [see also – Biotechnology of Archaea]. When the 
activity of such extreme acidophiles is not controlled in biomining operations, they can 
lead to acid mine drainage (AMD), which causes considerable environmental damage. 
While the microbes responsible for bioleaching and AMD are inherently adapted to 
extremely low pH and high concentration of metals, they are part of an open and 
dynamic consortia and continuously adapt to the particular conditions they are facing. In 
commercial bioleaching operations this can result in the selection of more robust and 
efficient strains, with reduced sensitivity to metal toxicity. For example, arsenic 
resistance genes have been horizontally transferred via a transposon from an 
unidentified bacterium to Acidithiobacillus caldus and Leptospirillum ferriphilum, 
resulting in substantially increased resistance to arsenic in gold-bearing arsenopyrite 
bioreactors. This demonstrates that taxonomy alone is not necessarily predictive of the 
physiological fitness of an individual organism and that the community gene pool can 
impact the adaptability of the constituent members across taxonomic barriers. Such 
strain engineering and selection for improved biotechnological characteristics may be 
applied to a wide range of bioremediation projects [see also– Bioremediation] as has 
been done for contaminating petroleum hydrocarbons accidentally released in arctic 
environments.  
 
Most of the applications involving extremophiles are based on their biomolecules, 
primarily enzymes but also other proteins (e.g. cryoprotectant antifreeze proteins), 
lipids, various small molecules. The most well known example of a successful 
application of an extremophile-derived product is Taq DNA polymerase which was 
isolated from Thermus aquaticus, first isolated from a geothermal spring from 
Yellowstone National Park. This enzyme approaches sales of about half a billion dollars 
per year. The molecular biology research tool enzymes not only include a wide range of 
other thermostable polymerases and ligases, but also enzymes isolated from 
psychrophilic organisms, such as the  “Antarctic phosphatase” from New England 
Biolabs. Genencor commercialized one of the first industrial extremozymes for use in 
textiles detergents, a cellulase isolated from an alkaliphilic bacterium from an east 
African soda lake. Numerous other examples are reviewed by Antranikian [see – 
Biotechnology of Archaea]. 
 
Enzymes that have optimal activity at extreme temperatures and pH are widely used in 
household detergents and in the food, textile, pulp and paper, leather processing, 
chemical intermediates industries. For each application, the enzymes have to fulfill 
numerous requirements related to such features as activity and stability, substrate 
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specificity and enantioselectivity. As a result, natural enzymes often are not optimal for 
the desired biotechnological application. Consequently, a variety of approaches have 
been used to modify enzyme properties such as error-prone PCR, saturation 
mutagenesis, structure-based protein engineering and in vitro evolution approaches. 
Such approaches are best combined with genetic selection or high throughput screening, 
to identify the rare mutants that approach the target characteristics, followed by an 
iterative process of building fitness to the resulting variants. For example, 
thermostability was built into a suite of other optimal enzymatic characteristics of 
pectinases used in cotton fabric processing  and increased alkaline stability was obtained 
for a previously engineered xylanase from the fungus Trichoderma reessei . 
Furthermore, based on genomics, structural data and computational modeling, certain 
protein architecture and amino acids usage trends provide clues to mechanisns of 
protein thermostablity and promise to lead to predictive protein thermostabilization.  
 
3. Extremophile Genomics Exposing the Biotechnological Potential 
 
Extremophiles, including eukarya (e.g. Alvinella pompejana, Tetrahymena thermophila, 
Dunaliella salina), have been prime subjects for genomic sequencing projects in an 
effort to understand the fundamental mechanisms of adaptation to specific environments 
and for practical applications. Recently, four psychrophilic bacteria have been 
published: two from arctic sediments, Desulfotaleas psychrophila  and Colwellia 
psycherythraea , one from coastal Antarctic waters, Pseudoalteromonas haloplankis  
and Photobacterium profundum, a deep sea bacterium that is both adapted to low 
temperatures and high pressure. While there does not appear to be a distinct genomic 
trait unifying these cold adapted organisms, they share several characteristics, most 
notably a membrane with increased proportion of polyunsaturated and branched fatty 
acids to increase fluidity at low temperatures (and high pressure), and the presence of 
cold shock proteins which are believed to increase translation efficiency by destabilizing 
secondary structures in mRNA. Additionally, cryoprotectants increase the capacity for 
nutrient uptake. Due to higher solubility of oxygen at low temperatures and hence 
potential for oxidative damage within the cell, metabolic reactions that generate reactive 
oxygen are reduced and molybdopterin-dependent metabolism is eliminated (in P. 
haplokantis) or the number of catalase and superoxide dismutatase genes increased (in 
C. psycherythraea  and D. psychrophila). While there are specific amino acid usage 
trends that appear to correlate with the psychrophilic proteomes, the most important 
adaptation for cold adapted enzymes appears to be a high specific activity at low 
temperatures. This is achieved by a highly flexible catalytic center at the expense of 
overall reduced protein stability and susceptibility for thermal denaturation. Such 
enzymatic characteristics are currently exploited in food biotechnological applications 
[see also– Fermented Foods and their Processing] that require low temperatures (e.g. 
milk and fruit juice processing). Beside cold adaptation, P. profundum is also able to 
withstand high pressure and has become a model organism for understanding 
piezophily. For example, transport processes and energy generation by cytochrome 
respiration are impacted by high pressure.  
 
Similar to the situation in cold adaptation, intrinsic properties of nucleic acids, lipids 
and enzymes/proteins allow thermophiles to flourish in high temperature environments, 
and specific composition biases and structural adaptations have been identified.  The 
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recent publications describing the genomes of two hyperthermophilic archaea, 
Nanoarchaeum equitans and Thermococcus kodakaraensis, one archaeal 
thermoacidophile (Sulfolobus acidocaldarius) and one thermophilic bacterium 
(Carboxydothermus hydrogenoformans) while not significantly changing the perception 
on high temperature adaptation, bring together a number of exciting novelties on various 
aspects of the biology, genome evolution and metabolic versatility in specific 
thermophilic environments.  
 
The genome of N. equitans came shortly after the discovery of this unusual organism, 
which represents the first case of an archaeon that is an obligate symbiont or parasite on 
another archaeon, the marine crenarchaeote Ignicoccus sp.. The genome abounds in 
oddities, from being at the smallest spectrum of cellular genome sizes and encoding 
virtually no metabolic pathways, to containing a large number of split genes, including 
uniquely split tRNA genes. One of the split genes is represented by two separate ORFs 
encoding DNA polymerase B (also fused with a split intein) which has is functional in 
vitro and trans spliced at high temperature thus restoring a functional polymerase. 
 
The Sulfolobus acidocaldarius genome sequence represents an important landmark in 
archaeal genomics as this organism is one of the few laboratory genetic systems in 
Archaea. S. acidocadarius genome has a number of similarities and differences with 
two other Sulfolobus species, and  will ease future experimental studies and facilitate 
overall biotechnological applications of these Crenarchaeaota. The bacterial 
thermophile, Carboxydothermus hydrogenoformans (35), has a remarkable efficiency to 
carry out carbon monooxidase metabolism due to the presence of five anaerobic CO 
dehydrogenase complexes.  
 
This genomic blueprint should allow detailed studies of hydrogenogenesis, which could 
become an important industrial process for generating hydrogen. The most 
thermoacidophilic organism known, Picrophilus torridus inhabits solfataric 
environments with pH below 1 and about 60oC , and its low pH adapted enzymes will 
most likely be found useful for biotechnological applications requiring acidic 
conditions. To cope with such conditions, P. torridus has evolved a membrane with low 
proton permeability and special lipid composition as well as efficient transport 
mechanisms to maintain the internal pH at values compatible with biochemical 
functions. Unlike other organisms, which use sodium ion and ATP-driven primary 
transporters, P. torridus predominantly uses the internal high proton concentration (pH 
4) to power a large number of solute secondary transporters.  
 
At the other extreme, the genome of a haloalkaliphilic archaeon from highly alkaline 
soda lakes, Natronomonas pharaonis, has revealed several adaptations to this 
environment. These include an overall modification of the proteome to increase the 
fraction of acidic amino acids and reduce protein hydrophobicity, a coating of the cell 
membrane with glycoproteins and secreted enzymes attached by lipid anchors as well as 
an efficient transport system for heavy metals and nitrogen compounds which are scarce 
in hypersaline environments. The halophilic bacterium Salinibacter ruber  displays 
similar adaptation mechanisms to hypersaline environments and some of these may 
have been acquired via lateral gene transfer. No doubt, many more surprises are hidden 
in these genomes that can be exploited for biotechnological purposes. 
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