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Summary 
 
As environmental and national security issues become more urgent, production of 
biofuels becomes more important (see also – Biorefineries –Concept of sustainability 
and human development). An untapped resource for the production of alcohol fuels is 
lignocellulosic biomass (see also. – Lignocellulose Biorefinery). This chapter contains 
an overview of the process, the current status of the technology and its promise and 
roadblocks, and a look to the future. It begins with an overview of the plant cell wall, 
essential to the understanding of the process. Then, it describes hydrolysis of the cell 
wall by microorganisms and how scientists have utilized this knowledge to manipulate 
and optimize the method. Next, molecular farming of hydrolysis enzymes in crop plants 
is discussed as a novel idea for maximizing enzyme production. Finally, other methods 
useful for the optimization and maximization of biofuel output are explored.  
 
1. Introduction 
 
Ethanol fuel is a promising alternative to fossil fuels, which damage the environment by 
contributing to net carbon dioxide increase. In addition, they will eventually be 
depleted, and increase dependence on foreign oil imports. According to a recent report 
from the Natural Resources Defense Council and the Institute for the Analysis of Global 
Security, the dependence of the United States on foreign petroleum both undermines its 
economic strength and threatens its national security. The use of ethanol fuel, obtained 
either from grain or from cellulosic materials, can help decrease the need for petroleum 
fuel. Accordingly, the ethanol fuel industry has been growing significantly in many 
countries throughout the world. In the US, ethanol production capacity reached 3.5 
billion gallons in 2004, up by 303 million gallons from 2003. Ethanol fuel is clean-
burning and does not contribute to net carbon dioxide increase, is renewable, and can be 
produced using resources the country already possesses. 
 
Ethanol is produced from the fermentation of sugars (usually sucrose or glucose) by 
yeast. The carbon (sugar) source is called the feedstock. Most feedstocks are plant 
materials. The most widely used feedstocks today are sugarcane (see also – Technology 
and econmics of fuel ethanol production from sugarcane) and maize grain. The sugar in 
sugarcane is easily extracted and used directly for fermentation, while the maize grain 
must be milled and its starch hydrolyzed to glucose by α-amylase (see also – 
Biorefineries). In the US, ethanol is mostly produced from the starch of maize grain 
with a net energy balance of 1.34; that is, for every unit of energy expended in growing 
corn and converting it to ethanol, 1.34 units of energy (automotive fuel) are obtained. 
The most efficient farming and ethanol production systems in place can achieve a 
balance of 2.09. Starch fermentation is thus relatively efficient. However, there is a very 
rich source of glucose that has so far been underutilized: cellulose.  
 
Cellulose, composed of β-glucose units, is the most abundant polymer on earth. It is a 
structural component of the plant cell wall. It has traditionally not been used as a carbon 
source because its location inside microfibrils, which are wrapped in hemicellulose and 
embedded in a matrix of lignin, makes it inaccessible to hydrolysis enzymes unless the 
plant material goes through extensive pretreatment. However, recent advancements have 
made using this resource a possibility. In this chapter, we explore the problems, 
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challenges, and solutions to ethanol production from cellulosic materials, with a focus 
on utilizing plants as biofactories for hydrolysis enzyme production. 
 
2. The Plant Cell Wall 
 
The plant cell wall is a highly organized structural component composed of a myriad of 
different polysaccharides, proteins, aromatic substances and other compounds. It has 
several important functions: it provides structure to the cell, thus determining its shape 
and even function; it aids in defense against invading pathogens; and it contains 
signaling molecules that can alert the cell to various environmental stimuli, including 
pathogenic attack. It is a dynamic structure, and its configuration and composition can 
vary by plant species, age, tissue, cell types and even within cell wall layers (see also – 
Plant Cell Culture). The primary cell wall is formed first from the cell plate during cell 
division and forms the outside of the cell. Between primary cell walls of adjacent cells 
is the middle lamella. Secondary cell wall synthesis, if present, usually begins after the 
primary cell wall has stopped growing, being deposited on the interior of the primary 
cell wall, often in layers. 
 
Polysaccharides are the primary constituents of the cell wall and form its main structural 
scaffold. They are composed of long chains of sugar molecules that are covalently 
linked at various positions and may have side chains. They are made up of various 
combinations of the 11 monosaccharide sugars commonly found in plant cell walls: 
glucose (from which all the others are derived), rhamnose, galactose, galacturonic acid, 
glucouronic acid apiose, xylose, arabinose, mannose, mannuronic acid and fucose. 
 
2.1. Cell wall components 
 
2.1.1. Cellulose 
 
Cellulose is a long, unbranched polymer of up to 15,000 molecules of anhydrous 
glucose. The glucose molecules are arranged in β-1,4 linkages, which means that each 
unit is orientated 180° relative to the unit it is attached to. In other words, cellulose is 
composed of cellobiose units (diglucose molecules connected via β-1,4 linkages). 
Cellulose is an important polysaccharide found in the primary and secondary cell walls 
in the form of microfibrils. It makes up 15-30% of the dry mass of primary cell walls 
and up to 40% of secondary cell walls. The cellulose chains in microfibrils are lined up 
parallel to each other and consist of crystalline regions, where the cellulose molecules 
are tightly packed, and amorphous (also called soluble) regions, where the arrangement 
is less compact. The amorphous regions are staggered so that the overall structure 
remains strong. A microfibril has a diameter of around 30 nm and consists of around 36 
cellulose chains, but the number varies with species. 
 
2.1.2. Cross-linking glycans 
 
Microfibrils are coated with other polysaccharides, cross-linking glycans (also called 
hemicelluloses), which link them together. The two major types are xyloglucans, found 
in dicots and around half of the monocot species, and glucuronoarabinoxylans, which 
are found in commelinoid monocots, including the cereals and grasses. Xyloglucans 
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have a backbone of glucosyl residues in 1,4-β linkages, with xylosyl units attached; 
glucuronoarabinoxylans have a backbone of xylosyl residues in 1,4-β linkages to which 
glucosyluronic acid and arabinosyl units are attached. The grasses also have a third 
major cross-linking glycan, called “mixed linkage” (1→3),(1→4)β-D-glucans (β-
glucans), which are unbranched polymers with a 2:1 ratio of cellotriose to cellotetraose 
units connected by (1→3)β-D-linkages, resulting in a coiled shape. Various mannans 
are also present in smaller amounts. Hemicellulose accounts for 20-40% of the total dry 
weight of plant matter.  
 
2.1.3. Pectins and other substances 
 
Pectins are a mixed group of various branched, hydrated polysaccharides abundant in 
galacturonic acid. In dicots, they account for approximately 35% of the dry weight; in 
monocots they are much less abundant. They serve many functions in the cell wall: they 
establish wall porosity, adjust wall pH and ion balance through charged surfaces, 
control bonding between cells at the middle lamella, and also function as recognition 
molecules to alert the cell to the presence of microorganisms or insects. Pectins are 
mostly made up of homogalacturonan and rhamnogalacturonan I; rhamnogalacturonan 
II, arabinans, galactans, and arabinogalactans are also present in smaller quantities. In 
addition to pectins, structural proteins and aromatic substances can also be present. 
 
2.1.4. Lignin 
 
Lignin is almost nonexistent in primary cell walls but is a chief constituent in some 
secondary walls, and accounts for about 10-25% of the total dry weight. It is composed 
of aromatic compounds called phenylpropanoids arranged in complex systems. These 
networks are linked to the carbohydrates, including cellulose and xylose, in various 
bonds, including ester, ester; phenyl, phenyl; and covalent bonds. Lignin protects the 
cell against pathogen invasion and will often be deposited in response to attack, 
providing additional structure and strength. 
 
2.2. Two major types of primary cell wall 
 
The basic structure of primary cell walls consists of the scaffold of cellulose and cross-
linking glycans, embedded in a second (and sometimes third) complex. There are two 
types of primary cell wall that differ in the kind of cross-linking glycan, which 
determines the wall type.  Type I walls are found in those plants that have xyloglucans; 
they have approximately equal amounts of xyloglucan and cellulose. Xyloglucans coat 
the cellulose microfibrils and bind them together, and this complex is embedded in a 
matrix of pectin. Type II walls are found in plants whose major cross-linking glycans 
are glucuronoarabinoxylans; they lack pectin and structural proteins, instead amassing 
phenylpropanoids. Type II cell walls are found in cereals and grasses, and thus are of 
greatest interest for cellulosic ethanol research. 
 
3. Cell wall degradation 
 
3.1. Microorganisms 
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Several microorganisms (bacteria and fungi) have been studied for their ability to break 
down cell walls, including anaerobes (such as those present in the rumen) and aerobes 
(such as those that decompose dead plant matter). Most organisms that can degrade 
cellulose produce a number of enzymes, which form a system that hydolyzes various 
polysaccharides, since the enzymes first have to penetrate the hemicellulose shield 
before they can attack the cellulose (see also – Cell thermodynamics and energy 
metabolism;  – Basic Strategies of Cell Metabolism). 
 
Anaerobic microorganisms known for their cell-wall degrading ability include the 
bacteria Butyrivibrio fibrisolvens H17c, Fibrobacter succinogenes S85, Ruminococcus 
flavefaciens 17, R. albus, Prevotella ruminicola B1 4, Clostridium thermocellum, C. 
cellulovorans, C. cellulolyticum, C. stercorarium and Caldocellulosiruptor 
saccharolyticus, and the fungus Neocallimastix frontalis. Aerobic microorganisms 
include the bacteria Acidothermus cellulolyticus, Pseudomonas fluorescens subsp. 
cellulosa, Streptomyces lividans 66, S. reticuli, S. halstedii, Cellulomonas fimi, C. uda 
and Microbispora bispora, and the fungi Thermomonospora fusca, Trichoderma reesei 
and Phanerochaete chrysosporium.  
 
These organisms produce many different enzymes that may be grouped according to 
their primary activities: endoglucanases, exoglucanases (or cellobiohydrolyases), β-
glucosidases, cellodextrinases, xylanases, xylosidases, lichenases, mannanases, 
laminarinases, arabinofuranosidases and avicelases. In order to decrystallize and 
hydrolyze cell walls, they must produce systems of many different enzymes (for each of 
the cell wall components) that act synergistically; this has been well documented. The 
enzymes vary in their substrate specificity: some exclusively act on a particular 
substrate, while others can utilize more than one; some have more activity on one 
substrate over another; and some can break only certain bonds, while others can cleave 
more than one bond type. In addition, different enzymes often produce different 
products from the same substrate. Therefore microorganisms may produce several 
different enzymes, for specific substrates or bonds or both (see also  – Enzyme 
production). Some microorganisms, such as Clostridia spp., produce cellulosomes, 
complexes of multiple enzymes held together in a specific conformation by proteins that 
are very efficient at cell wall hydrolysis.  
 
3.2. Hydrolysis 
 
The major classes of enzymes needed for cell wall hydrolysis are cellulases, 
hemicellulases and ligninases. 
 
3.2.1. Cellulases 
 
Three types of cellulases are needed to obtain glucose from cellulose: endoglucanase 
(E1; E.C. 3.2.1.4), cellobiohydrolase (also called exoglucanase) (E.C. 3.2.1.91), and β-
glucosidase (E.C. 3.2.1.21). Enymatic hydrolysis of plant cell wall polysaccharides to 
glucose is a three-step process. First, endoglucanase randomly cleaves the crystalline 
regions of cellulose, exposing chain ends. Then, cellobiohydrolase attaches to the chain 
end and threads it through its active site, processively cleaving off cellobiose units; it 
can also act on amorphous regions with exposed chain ends without prior 
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endoglucanase activity. Exoglucanases work from either the reducing or non-reducing 
end of the sugar, not both; cellulase hydrolysis is more efficient if both types are 
produced. Finally, β-glucosidase breaks the bonds of cellobiose to produce single 
glucose units. 
 
3.2.2. Hemicellulases 
 
For cellulases to access the cellulose, the hemicellulose surrounding it must be removed. 
While cellulose consists of a single monosaccharide and type of bond, hemicelluloses 
are amorphous and diverse. Since the major constituent of hemicellulose is β-1,4-xylan, 
the most abundant class of hemicellulase is xylanase, which can have both endo- and 
exo- activity. 
 
3.2.3. Ligninases 
 
Lignin degradation by microorganisms is less well understood than that of 
polysaccharides. The most effective lignin-degrading microbes in nature are thought to 
be white rot fungi, especially Phanerochaete chrysosporium and Trametes versicolor.  
The three major families of lignin-modifying enzymes produced by fungi are laccases, 
manganese-dependent peroxidases, and lignin peroxidases. They oxidate compounds by 
using or creating radicals. 
 
4. Ethanol production 
 
4.1. Maize grain ethanol production 
  
Ethanol produced from maize grain is a mature technology. It is attractive because it 
benefits farmers and local communities by providing jobs, a valuable resource, and 
valuble coproducts (such as distillers grains and corn gluten). As of 2007, 124 
biorefineries are in operation and 76 more are being constructed. Ethanol production 
currently stands at nearly 6.5 billion gallons a year and will reach 12.9 billion gallons 
per year upon the plants’ completion, which could displace 4.7 and 9.3 billion gallons of 
gasoline respectively (if E85, a fuel blend of gasoline and up to 85% ethanol, is used). 
However, this only covers around 3% or 6.7% respectively of the total gasoline 
consumed annually in the US (137 billion gallons in 2006).  
 
US maize growers produced 10.5 billion bushels of maize grain in 2006; 18.3% was 
used in ethanol production. This is the equivalent of 2.2 billion bushels, or 6.2 billion 
gallons of ethanol, which likely displaced 4.4 billion gallons of gasoline (3.2% total 
consumption). Since current ethanol plant capacity is 2.3 billion bushels, becoming 4.6 
billion bushels, grain production must increase to meet capacity, or must be diverted 
from other uses. Currently, 50.8% of total production, or 6 billion bushels, is used for 
livestock feed. Much of this could be successfully diverted to ethanol fuel production as 
the grain could be replaced with nutritious distillers grains. To meet capacity, only 1.7% 
(currently) or 40% (when the plants are completed) need be diverted from grain destined 
for livestock feed (0.1 billion bushels and 2.4 billion bushels respectively). Therefore 
meeting production capacity from maize grain is an attainable goal and likely to be 
realized. However, if all the maize grain produced in the US were used for ethanol fuel 
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production, only 29.4 billion gallons would be produced, the equivalent of 21.2 billion 
gallons of fuel, or 15.4% of current usage. Clearly, an alternative to maize grain ethanol 
is needed. 
 
4.2. The promise of cellulosic ethanol 
 
Worldwide wasted crops and lignocellulosic waste crop residue could translate into 
129.7 billion gallons of ethanol and replace 93.4 billion gallons of gasoline (about 32% 
of current consumption) if E85 is used. About 90% of this estimate comes from crop 
residue waste. This number could be much higher if biofuel crops were grown to 
supplement this amount and if the technology were in place to produce it. Worldwide 
availability of lignocellulosic feedstocks is estimated at over 1.7 billion tons per year, 
with some estimates reaching 10-50 billion tons of crop biomass annually. In addition to 
being inexpensive and widely available, lignocellulosic biomass has the added benefit 
of being renewable and thus sustainable. It is believed that with proper management, 
roughly 1.3 billion tons of crop and forest residues and energy crops can become 
available annually in the US, the majority of which could be used for conversion to 
alcohol fuels, yielding the equivalent of approximately 108.5 billion gallons of gasoline. 
A current goal for enhancing US economic security is to meet 10% of chemical 
feedstock demand by 2020 with plant-derived materials, or a fivefold increase over 
current usage level. Crops that have a high amount of lignocellulosic biomass, such as 
corn, rice, sugarcane and fast growing perennial grasses have been recommended for 
conversion to alcohol fuels. 
 
Construction of commercial biomass ethanol facilities is currently underway in the US. 
These facilities will have the capactiy to collectively produce 226.4 million gallons per 
year. They include: Abengoa Abengoa Bioenergy, NE; Akico, Inc., FL; Bluefire 
Ethanol, CA; Broin Companies, IA;  Iogen Biorefinery Partners, ID; and Range Fuels, 
GA. In Canada, Iogen Corporation has a demonstration biomass ethanol plant currently 
in operation that can produce about 660,000 gallons of ethanol per year.  
 
4.2.1. Cellulosic ethanol production 
 
To produce ethanol from biomass, several events must take place: the hydrolysis 
enzymes must be produced (usually in microbial fermentation tanks), the biomass must 
undergo a pretreatment process to disrupt the lignin and expose the cellulose, the 
enzymes must be added to the pretreated feedstock, and the resulting sugars must be 
fermented and distilled.  
 
4.2.2. Challenges to cellulosic ethanol production  
 
Although production of fermentable sugars for alcohol fuels from plant biomass is an 
exciting and attractive idea, and substantial efforts have been made toward improving 
ethanol yield through this technology and reducing its production costs, major 
roadblocks still stand in the way of widespread commercial implementation of this 
technology. These include prohibitive costs of pretreatment processing of the 
lignocellulosic matter, with estimates of up to $0.30/gallon and production of microbial 
cellulase enzymes used in the conversion of cellulosic matter to fermentable sugars. 
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Removal of lignin is the major roadblock to this process and an area of intense research 
because of the high cost involved. Although research is ongoing in the area of fungal 
ligninases (mentioned above) and reduction of lignin content (described below) in order 
to decrease the necessity (and thus the cost) of pretreatment, pretreatment is currently 
required. Several pretreatments have been developed so far, including dilute acid, acid 
flow-through, ammonia fiber explosion (AFEX), ammonia recycle percolation, steam 
water explosion, lime, and organosolv pulping. 
 
Currently, production of hydrolysis enzymes in microbial fermentation tanks is 
expensive. Although decades of research have been devoted to reducing microbial 
production costs, resulting in significant decreases since 1980, enzyme production is 
still costly. The latest cost-reduction model designed by the National Renewable Energy 
Laboratory (NREL) and Genencor is to produce cellulases at around $0.10-$0.20 per 
gallon of ethanol. A possible solution to these problems is to use biomass crops as 
biofactories to produce these enzymes on a large scale.  
 
5. Production of Hydrolysis Enzymes in Biomass Crops 
 
5.1. Plants as molecular biofactories 
 
Plants are already being used successfully for molecular farming of enzymes and other 
proteins, carbohydrates, lipids, polymers such as polyhydroxybutyrate and 
pharmaceuticals. Plant-based production of enzymes has several critical advantages 
compared to microbial fermentation or bioreactors. For example, plants can use the 
sun’s energy directly, requiring fewer energy inputs. Furthermore, proteins produced in 
plants generally display correct folding, glycosylation, activity, reduced degradation and 
increased stability. In addition, the infrastructure and expertise are already available for 
plant genetic transformation, growing, harvesting, transporting and processing plant 
matter. 
 
The US Government has recently urged the agricultural and petrochemical industries to 
discover and employ alternatives to fossil fuels to both decrease dependence on foreign 
oil and promote a cleaner environment. A specific recommendation was to develop 
technology that would allow production of cellulases and other hydrolysis enzymes in 
plants, which has the potential to reduce enzyme production costs. Extraction of plant 
total soluble protein (TSP) from leaves is quick and easy, and could be done at the 
ethanol production facilities; alternatively, the enzymes could be extracted and 
lyophilized for inexpensive storage and easy transport.  
 
- 
- 
- 
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Carpita, N. and M. McCann. 2002. Chapter 2. The cell wall. In Biochemistry & Molecular Biology of 
Plants, ed. B. Buchanan, W. Gruissem, and R.L. Jones, 52-108. John Wiley & Sons. [This chapter 
provides a very comprehensive, detailed analysis of the plant cell wall, including structure, biochemistry 
and function.] 

Chabannes, M., A. Barakate, C. Lapierre, J.M. Marita, J. Ralph, M. Pean, S. Danoun, C. Halpin, J. Grima-
Pettenati and A.M. Boudet. 2001. Strong decrease in lignin content without significant alteration of plant 
development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and 
cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. The Plant J. 28(3): 257-270. [This report 
describes an experiment in which CCR was reduced in tobacco and resulted in a decrease in lignin and an 
increase in xylose and glucose associated with the wall.] 
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