
BIOTECHNOLOGY – Vol. VIII -  Transgenic Technologies for Animals as Bioreactors - Bin Wang, Xiangzhong (Jerry) Yang 

TRANSGENIC TECHNOLOGIES FOR ANIMALS AS 
BIOREACTORS 
 
Bin Wang 
Nexia Biotechnologies, Quebec, Canada 
 
Xiangzhong (Jerry) Yang 

University of Connecticut, Storrs, USA 
 
Keywords: microinjection, animal cloning, retrovirus, spermatozoon, embryo, 
transgene, integration, cloning, expression, bioreactor 
 
Contents 
 
1. Introduction 
2. Methods for Producing Transgenic Animals as Bioreactors 
3. Control of Transgene Expression in Transgenic Animal Bioreactors 
4. Conclusions 
Acknowledgments 
Glossary 
Bibliography 
Biographical Sketches 
 
Summary 
 
It was in the early 1980s that the first transgenic mouse was reported. Transgenic 
animals are useful for studying human diseases as well as for the manufacture of 
pharmaceutical proteins. With knowledge of the complete DNA sequence of the human 
genome, and that of other species as well, transgenic animal models will become 
increasingly important for evaluation of gene function in the near future. No doubt this 
will accelerate researches into mechanisms of human diseases and aid drug discovery. 
Furthermore, production of pharmaceutical proteins in the milk of transgenic dairy 
animals has been achieved and successfully scaled up in a handful leading biotech 
companies. However, transgenic efficiency in domestic mammals has remained low, 
and the underlying mechanism of transgene integration is elusive. 
 
In recent years, technical advances have alleviated, at least to some extent, the low 
efficiency of animal transgenics. Some newly developed technologies (see Methods in 
Gene Engineering) such as retrovirus-mediated gene transfer, sperm utilized as DNA 
carriers through ICSI have provided opportunities for improvements in animal 
transgenics. Most notably, the combination of DNA somatic cell transfection 
technologies with those of mammalian cloning has overcome a major hurdle in 
producing large transgenic animals: the very high cost of producing transgenic farm 
animals with conventional pronuclear microinjection. Furthermore, these techniques can 
provide the options of performing other genetic alterations, such as gene knock-in and 
knock-out in large animals. Additionally, advances in the understanding of the 
regulation of gene expression in eukaryotic cells have provided more information for 
the design of reliable and highly expressed transgenes. Newly emerging technologies in 
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animal transgenics provide exciting opportunities for researchers further to comprehend 
gene function in both experimental and economically important domestic animals. An 
exciting new era of precise genetic manipulations is on the horizon. 
 
1. Introduction 
 
The regulation of gene function and expression has become one of the main themes in 
modern biological research (see Methods in Gene Engineering). Transgenic mice were 
first reported by Gordon in 1980, followed in 1982 with a report of a changed 
phenotype caused by the expression of transgene (see also Genetic Engineering of 
Mammalian Cells). The methodology using direct DNA microinjection was later 
successfully repeated in 1985, producing transgenic animals in three other species: 
rabbits, sheep, and pigs. Animal gene alteration through homologous recombination was 
first reported by Capecchi in 1989. By the year 2000, an estimated 5000 genes had been 
inactivated in mice. 
 
It has been well documented that animal transgenic technologies have provided a 
valuable tool for studying gene function and genetic diseases in humans, and hence their 
application in the biomedical fields is essential. Some of the many applications in 
biomedical science include: (1) genetically altered animals as organ or tissue donors 
(xenotransplantation), and (2) manufacture of pharmaceutical or nutriceutical 
recombinant proteins (see also Protein Engineering) through various animal organs, 
including the mammary gland, seminal vesicle gland, kidney and bladder. Apart from 
basic research, transgenesis will also continue to provide a powerful tool to modify 
economically important traits in agriculturally important animals. In spite of the great 
progress that has been made in many transgenic animal technologies, there is still much 
room for improvement. In this review, we intend to summarize the state of the art of 
mammalian transgenesis for the creation of bioreactors, and to reveal current 
imperfections and discuss the future directions of research pertaining to the technologies 
of exogenous gene transfer and regulation of transgene expression in transgenic animals. 
 
2. Methods for Producing Transgenic Animals as Bioreactors 
 
The definition of a transgenic animal is one that has an exogenous DNA incorporated 
into its genome and is able to transmit this to its progeny. There are currently several 
methods used to produce transgenic animals, depending on the species. 
 
2.1. Producing Transgenic Animals by Direct DNA Microinjection into Zygote 
Pronuclei 
 
To incorporate into an animal’s genome, exogenous DNA must pass through cell 
membranes to get access to chromatin in the nucleus. In metaphase, the cell’s nuclear 
envelope disappears, so the foreign DNA only needs to get into cytoplasm to come into 
contact with chromosomes. However, at interphase, even though the foreign DNA 
enters the cytoplasm, the chance of integrating into chromatin is still slim because the 
nuclear envelope separates the nuclear contents from the cytoplasm. Furthermore, 
foreign DNA is more likely to be degraded in the cytoplasm. Naturally, foreign DNA 
could enter animal cells through various virus infections, but it is impossible for a DNA 
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fragment to pass through the cell’s membrane boundary. 
 
In 1980, Gordon and his coworkers first reported that exogenous genes could be 
introduced into the mouse genome by direct insertion into the nuclei of early embryos. 
In their report, a recombinant plasmid, composed of segments of herpes simplex virus 
and simian virus 40 viral DNA inserted into the bacterial plasmid pBR322, was 
microinjected into pronuclei of fertilized mouse oocytes; two of 78 mice born after one 
series of microinjections carried the transgene. This was followed by a report that the 
fusion gene of the mouse metallothionein-I gene with the structural gene for a rat 
growth hormone was expressed in transgenic mice produced by DNA microinjection 
into the pronuclei of fertilized mouse eggs. The microinjection technique was 
systematically improved by comparing the factors affecting transgenic efficiency in 
mice. Later, domestic animals were successfully produced using DNA microinjection. 
 
To date, numerous animals across a broad spectrum of mammalian species have been 
produced using DNA microinjection, including rabbits, sheep, pigs, cattle, goats, and 
rats. However, due to its high cost, this method does not appear to be commercially 
viable for large species such as the bovine. It has been estimated that producing a 
transgenic cow can cost as much as US$546 000 when in vivo zygotes are microinjected. 
Apparently, most of the cost is related to surgery for recovering zygotes from 
superovulated donors. This problem could be alleviated by production of embryos using 
in vitro maturation and fertilization. The first transgenic bull harboring the gene for 
human lactoferrin was reported in 1991, and was produced by microinjection of DNA 
into pronuclei of zygotes derived from in vitro maturation and fertilization of 
slaughterhouse-sourced oocytes. Producing transgenic animals through microinjection 
of in vitro derived zygotes has been applied to the large-scale transgenic production of 
cattle and goats in recent years. 
 
The microinjection technique is perhaps the most straightforward approach to 
introducing DNA into the nuclei. Due to the ability of the cell membrane to heal, a 
localized rupture of the oolemma usually can recover immediately following 
microinjection. A finely drawn glass needle (tip size about 1 μm), loaded with DNA, is 
used for microinjection. Under a microscope, the micropipette is inserted into the 
ooplasm and penetrates the oolemma and nuclear envelope. Typically, about 2 pl of 
DNA solution (about 300 DNA molecules) is injected into the male pronucleus in mice. 
Surviving zygotes are transferred into synchronized pseudopregnant recipients to 
develop to term. Transgenic offspring can be identified with PCR screening (see also 
Chemical Methods Applied to Biotechnology), and further confirmation can be ensured 
by southern blotting and FISH (fluorescence in situ hybridization) analyses. 
 
The microinjection procedure used in mice could be adapted for other animals; however, 
this presents many challenges. Unlike mice, most of the zygotes from domestic animals 
have a higher quantity of cytoplasmic lipids, which cause zygotes to appear opaque 
under the microscope. Centrifugation at 10 000 g to 15 000 g is necessary to stratify the 
opaque lipids in the cytoplasm in order to visualize the pronuclei in the zygotes of goats, 
cattle, and pigs. Moreover, the zygotic nuclear envelope of goats, cattle, and pigs at 
early pronuclear stage is less elastic than that of mice; therefore, microinjection often 
results in the nuclear membrane rupturing and/or DNA solution leaking into the 
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cytoplasm. To make transgenic domestic animals with an acceptable transgenic rate (5-
10% of offspring born), the DNA concentration, the amount of solution delivered into 
the pronuclei and mechanical damage to the pronuclei or chromatin, and other factors 
need to be carefully considered. In addition, embryo culture systems and the embryo 
stages prior to their transfer should be optimized, since in vitro and in vivo 
environments may impose negative selection pressure on the survival of transgenic 
embryos. Nienmann and his colleagues reported that 16–20% of the piglets were 
transgenic following the transfer of 20–30 microinjected zygotes per recipient, 
compared with 8% transgenics when more than 30 zygotes were transferred per 
recipient in pigs, which suggests that in vivo conditions favor the development of non-
transgenic embryos. 
 
The rates at which foreign DNA integrates into an animal’s genome (transgenic rate) 
varies across different mammalian species. Under optimal conditions, about 30% of 
mice offspring are transgenic, but the transgenic rate of offspring is much lower in 
domestic animals: 12–21% in rabbits, 5–10% in goats, 8.3% in sheep, 9.2% in pigs and 
7–8% in the bovine. The reasons why the transgenic rate in domestic animals is lower 
remain to be determined. Wall pointed out that timing of microinjection could 
contribute to differences in integration efficiency. One obvious discrepancy is that DNA 
microinjection is usually performed at the zygotic G1 or early S phase in the mouse, but 
at the later S or G2 phase in domestic animals. Some evidence suggests that integration 
of foreign DNA occurs during the DNA replication in host cells, so it seems less likely 
that DNA integration can occur during the first cell cycle of a zygote in domestic 
animals. An attempt to microinject synchronized bovine zygotes at early, mid and later 
S phase was reported, but the results were not conclusive. It was unclear whether 
injection timing could affect DNA integration because of interference by the transient 
expression of non-integrated genes in the preimplantational embryos. 
 
Other factors also need to be considered. When compared with mice the embryo 
viability of domestic animals dramatically decreases following micromanipulation, 
presumably because the in vitro culture system for embryos of domestic animals has not 
yet been optimized. The machinery in embryos used to repair DNA might also be 
involved in the integration of foreign DNA. A less than optimal culture system could 
certainly hinder the embryo’s ability to repair its DNA, and in turn reduce its ability to 
integrate foreign DNA. Lastly, several variables such as the DNA dilution buffer and 
the concentration at which it is microinjected have not been optimized for domestic 
animals. To date, there have been no reports on the effect of DNA buffer composition, 
such as EDTA concentration, on the integration of DNA into the genome of domestic 
animals, although this has been shown to be very critical in mice. It has been 
demonstrated that EDTA could induce the chromosome-breaking activity. DNA double 
strand breaks could be exacerbated by microinjection of DNA solution containing 
EDTA; these breaks might provide the sites for DNA integration through ligation 
reactions. Nevertheless, it is practically impossible, due to the enormous amounts of 
labor and finance required, to do statistically adequate testing in large domestic animals. 
 
2.2. Characteristics of Transgene Integration and the Mechanism of Mosaicism 
 
The exogenous DNA delivered into pronuclei will persist in embryos either as genomic 
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integration or in episomal forms; otherwise it will face degradation in the cytosol as the 
embryo develops. Foreign DNA molecules introduced into the nucleus first align 
themselves in arrays of concatemers (mostly head to tail) through homologous 
recombination or random end-to-end joining, then these short or long concatemers enter 
into a site on one of the chromosomes. Early transgenic mouse studies suggested that 
integration often occurred at only one site on one chromosome; more data in recent 
years, however, showed that DNA integration could take place in multiple locations on 
either the same or different chromosomes depending on the sequences of DNA injected. 
DNA head to tail concatemers can quickly form in a few minutes after DNA is 
microinjected into mouse pronuclei. These concatemers could be detected in the 
embryos from one cell to blastocyst stage, and moreover, the exogenous DNA in 
blastomeres was distributed in a mosaic pattern. Whitelaw and his coworkers reported 
that as many as 62% of pronuclear microinjection-derived transgenic founders are the 
mosaics of transgenic and non-transgenic cells, which suggests that the majority of 
DNA injected into fertilized mouse eggs integrates after the first round of chromosomal 
replication. 
 
It has been postulated that DNA repair mechanisms mediate transgene integration. Two 
DNA repair pathways, homologous recombination and nonhomologous recombination, 
are involved in the insertion of transgenes. Homologous recombination can promote 
transgene integration when the transgenes possess the same sequences as the 
endogenous genes. When transgenes do not share extensive genomic identity, 
integration might be the result of homologous matches of short sequences between 
transgenes and genomic sequences. The frequency of transgene integration through 
homologous recombination is very low in mammalian cells. Recent evidence clearly 
suggests that a pathway exists in the DNA repair mechanism of mammalian cells for the 
joining of nonhomologous ends, and is the preferred mechanism for the repair of double 
strand break (DSB) during mitosis in vertebrates. DNA repair through nonhomologous 
end-joining is believed to mediate the illegitimate insertion of exogenous DNA into 
chromatin. 
 
DNA repair activity is regulated through cell-cycle stages. In G1 and early S phases, 
DNA DSB repair is characterized by nonhomologous recombinant repair in mammalian 
cells. Two discrete complexes are implicated in this pathway: the DNA-dependent 
protein kinase (DNA-PK) complex and the RAD 50 complex. However, DNA DSB 
repair through homologous recombination dominates in the S and G2 phases. RAD 52 
complex and BRCA ½ complex mediate this pathway. Since the homologous 
integration of exogenous DNA in mammals is a very rare event, transgene integration 
probably occurs through nonhomologous recombination. As described above, due to the 
difficulty of injecting a smaller pronucleus at G1 phase, DNA microinjection usually 
takes place during S and G2 phases, and consequently exogenous DNA has very little 
chance of integrating through nonhomologous recombination during the first cell cycle. 
Therefore, we could assume that the transgene remaining episomally in the zygotes 
following its first cleavage would be most likely to integrate during the G1 and/or early 
S phase of the 2 cell or later stage embryo. However, the integration rate is constrained 
by the frequency of spontaneously occurring double strand breaks in the chromatin. 
When DNA integration occurs after the first cleavage, it results in transgenic mosaicism. 
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Glossary  
 
Animal cloning: The production of an animal with nuclear DNA identical to 

another animal. 
Cell cycle: Most eukaryotic cell cycles can commonly be divided into four 

phases: G1 before DNA synthesis occurs; S when DNA 
replication occurs; G2 after DNA synthesis; and M (Metaphase) 
when cell division occurs, yielding two daughter cells. A non-
dividing state is called “quiescence” (G0). 

Chromatin: Complex of DNA, histones, and nonhistone proteins present in 
the nucleus of eukaryotic cells. 

Germ line: The lineage of cells that connect the generations. The sperm and 
the egg are examples of germ line cells. 

Homologous 
recombination: 

Genetic recombination involving exchange of homologous loci. 

Nuclear transfer: A general term for the process of cloning where the genetic 
information from a body cell is transferred to an egg cell whose 
DNA is removed. 

Oolemma: The cell membrane of an oocyte. 
Protein kinase: Enzyme catalyzing transfer of phosphate from ATP to hydroxyl 

side chains on proteins, causing changes in function. 
Promoter: DNA sequence that determines the site of transcription initiation 

for a RNA polymerase. 
Reverse 
transcriptase: 

RNA-directed DNA polymerase. 

Somatic cell: A body cell, as opposed to a germ line line cell. 
Transgenesis: The stable introduction of modified genes or genes from another 

animal or species into an animal’s genome. 
GFP: Green fluorescent protein. 
ICSI: Intracytoplasmic sperm injection. 
MII: Metaphase II. 
PCR: Polymerase chain reaction. 
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