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Summary 
 
Strategies to generate transgenic mice with defined genetic alterations have evolved 
rapidly. Highly sophisticated strategies have been developed in which the activity of a 
selected gene can be spatially and temporally controlled. A large amount of information 
has been gained by utilizing transgenic mice in the study of complex biological 
processes such as the immune system. This article describes advances in the 
technologies available to manipulate the mouse genome. Moreover, applications of 
these technologies in the investigation of basic immunology and in modeling 
immunological disorders are outlined. 
 
1. Introduction 
 
There has been a revolution in the development of strategies used in the manipulation of 
the mouse genome. These technologies represent fascinating tools with which to 
investigate biological processes in mammals (see Mammalian Cell Culture and Genetic 
Engineering of Mammalian Cells). Although the ability of the mouse to model human 
diseases has been criticized, a consensus exists that the majority of physiological and 
chromosomal events are mediated in a similar manner in both species. Since both 
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species also share similarities in their anatomy, this can be utilized in the examination of 
developmental processes in humans. Relevant in vivo models are essential in developing 
strategies to prevent or treat human diseases as in vitro systems can never provide the 
complex and tightly regulated environment of organs and cells present in the living 
organism. Furthermore, sophisticated biological processes such as the immune system 
cannot be investigated in lower organisms (e.g., bacteria, nematode worms, or fruit fly), 
they must be analyzed in organisms that possess such processes.  
 
Several human immunological diseases are caused by chromosomal aberrations such as 
gene deletions, duplications, inversions, translocations, and point mutations (see 
Methods in Gene Engineering). These events can impair the function of the gene 
product directly, or they can interfere with gene regulation. Chromosomal defects can 
be spontaneously induced, but exposure to external factors, e.g., X-ray radiation and 
certain chemicals can substantially increase the frequency of gene aberrations. Gene-
manipulated mice with defined alterations in their genome can be exploited in modeling 
gene-mediated human diseases. Such mice are also useful in the investigation of which 
biological processes are required to respond efficiently against pathogens, or to examine 
homeostasis in the organism. This review describes advances in the transgenic 
technologies available to manipulate the mouse genome. Moreover, applications of 
these techniques in the investigation of basic immunology and immunological diseases 
are outlined. 
 
2. Strategies to Generate Transgenic Mice 
 
Several mouse strains with spontaneous mutations have been identified over the years 
and permanent colonies of these mutant strains have been produced, but because of the 
stochastic nature and the low frequency of the spontaneous mutation this approach is 
not suitable for the generation of specific gene defects. Exposure to certain chemicals 
and radiation has also been used to increase the mutation frequency in mice, but the 
unpredictable nature of the mutation process makes this approach difficult to use in an 
efficient way. In the early 1980s, investigators introduced cloned DNA directly into 
fertilized mouse eggs by microinjection and were able to generate transgenic mice with 
stable integration of foreign DNA into the host genome. The limitation of this approach 
was that transgene integration was a random process (see Transgenic Animals). The 
revolution in gene targeting occurred in the late 1980s by an ingenious combination of 
two different techniques: 1) the generation of the pluripotent embyryonic stem (ES) 
cells in culture and 2) the development of in vitro gene targeting methodology in 
mammalian cells by homologous recombination. Thereafter tremendous progress was 
made in the generation of gene-manipulated mice. In early 1991, there were seven 
targeted mutations described in the literature whereas a mere six years later more than 
700 mutations had been reported. Strategies to manipulate the mouse genome have 
evolved rapidly, utilizing more and more sophisticated techniques that can be applied in 
the study of complex biological processes.    
 
2.1. Gene targeting with homologous recombination 
 
The defining property of ES cells is their stable maintenance of a pluripotent 
differentiation potential, as demonstrated by the expression cell markers for the 
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pluripotent cell but not those of differentiated cells. ES cells can be cultured in large 
numbers which permits the genetic modifications of these cells in culture. ES cells also 
have a remarkable ability to colonize the host embryo, which is crucial in transferring 
genetic information from ES cells into the germline. Advances in controlling ES cell 
differentiation have also provided insights into cell biology and the determination of cell 
fate.  
 
In homologous recombination, the enzymatic machinery of the recipient cells replace 
homologous endogenous DNA sequences with exogenous DNA sequences. By utilizing 
specific targeting vectors that are transferred into ES cells, the desired endogenous gene 
can be permanently eliminated, resulting in gene knockout cells (Figure 1A). 
Alternatively, targeting vectors can be designed to transfer foreign DNA into the desired 
site in the host DNA without disrupting the endogenous gene resulting in knocking cells 
(Figure 1B). 
 

 
 

Figure 1. Generation of knockout and knockin cells by homologous recombination. A) 
Targeting vector contains sequences homologous to endogenous gene and a selection 

cassette (neo) inserted into an exon. Homologous recombination event replaces genomic 
sequences by vector sequences and disrupts endogenous exon by neo. B) Knockin 
strategy. DNA of interest will be inserted in-frame in an endogenous exon to be 
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targeted. The transgene will be expressed in the desired place of the host DNA without 
disrupting the endogenous gene. 

 
Because the frequency of the homologous recombination event is low, investigators 
have devised strategies to enrich cells in which homologous targeting events have taken 
place. The most frequently used approach is a “positive-negative” selection strategy 
(Figure 2). This procedure has two components: a) a positive selectable gene to enrich 
recipient cells that have incorporated the targeting vector somewhere in their genomes, 
and b) a negative selectable gene to eliminate cells in which the targeting vector has 
been incorporated randomly into nonhomologous sites in the genome. To achieve this 
kind of selection, the transfected ES cells are cultured in a medium containing a drug for 
positive selection which kills cells that lack the protective drug resistance gene, derived 
from the targeting vector, and a drug for a negative selection destroying cells containing 
a negative selectable gene that is incorporated into genomes only if the targeting vector 
is incorporated at nonhomologous sites. This strategy guarantees an enrichment of 
targeted versus nontargeted ES cells by up to 50-fold and is the approach used to 
generate most of the gene-knockout mice reported so far.  
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Figure 2. Positive-negative selection strategy for enrichment of targeted ES cells. A) In 
a homologous recombination event, only a positive selectable gene (neo), derived from 

the targeting vector, is incorporated into the desired place in the genome, whereas a 
negative selectable gene (HSV-) is not incorporated. This generates targeted cells that 

are resistant both to a drug for positive selection and a drug for negative selection. B) In 
a random integration event both a positive selectable gene (neo) and a negative 

selectable gene (HSV-) are incorporated into the genome. This generates cells that are 
resistant to a drug for positive selection but are sensitive to a drug for negative selection. 
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Figure 3. Generation of gene targeted mice. The first step involves introduction of 
targeting vector into ES cells. A positive-negative selection strategy is used to enrich the 

targeted ES cells. Selected targeted ES cells are injected into blastocysts which are in 
turn surgically transferred into the uterus of foster mothers generating chimeric progeny. 

Chimeric mice are crossed with wild type mice to establish a stable germline 
transmission of transgene. The progeny derived from the chimeras and wild type mice 
are characterized and a stable mutant mouse line carrying the transgene is generated. 
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The next step in the generation of gene-targeted mice includes in vitro microinjection of 
selected ES cells which contain the desired gene modification into mouse 
preimplantation embryos, termed as blastocysts (Figure 3). Blastocysts are in turn 
surgically transferred into the uterus of hormone-treated foster mothers, resulting in 
generation of chimeric progeny (Figure 3). Chimeric mice have mosaic-like tissues 
composed of a random distribution of wild type cells and knockout cells. To facilitate 
isolation of the chimeric progeny with a high degree of gene-targeted cells, the ES cells 
and the recipient blastocysts are derived from mice with different coat color alleles. This 
allows evaluation of the extent of chimerism by the coat color chimerism. Chimeric 
mice are then crossed with wild type mice to establish a stable germline transmission of 
the modified genome (Figure 3). The progeny derived from the chimeras and wild type 
mice are characterized and the mice with gene modification are selected. These mice are 
used to generate the stable mutant mouse line that carries the desired gene modification 
in their germline. 
 
- 
- 
- 
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