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Summary 
 
This section is primarily concerned with developing the background of the describing 
function for a single sinusoidal signal and showing how it can be used in the analysis 
and possibly the design of a nonlinear feedback system. After the definition of the 
describing function, its value is obtained for several specific nonlinear characteristics 
and then it is shown how the information can be used to explore the possibility of limit 
cycles in a nonlinear feedback loop. It is shown how the stability of any limit cycles 
may be ascertained and two examples of use of the DF in control systems problems are 
given. Uses of the DF for evaluating the closed loop frequency response and for 
designing compensators to eliminate limit cycles are discussed. The latter part of the 
presentation discusses describing functions for other signals, including those consisting 
of more than one component, and their possible uses in studying some aspects of 
feedback loop analysis and design. 
 
1. Introduction 
 
The describing function, which will be abbreviated DF, method was developed 
simultaneously in several countries during the 1940s. Engineers found that control 
systems which were being used in many applications, for example gun pointing and 
antenna control, could exhibit limit cycles under certain conditions rather than move to 
a static equilibrium. They realized this instability was due to nonlinearities, such as 
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backlash in the gears of the control system, and they wished to obtain a design method 
which could ensure the resulting systems were free from limit cycle operation. They 
observed that when limit cycles occurred the waveforms at the system output were often 
approximately sinusoidal and this indicated to them a possible analytical approach, 
namely to assume that the signal at the input to the nonlinear element in the loop was a 
sinusoid. Since then there have been many developments in terms of both using the DF 
concept for other types of signals and the problems, or phenomena, which they can be 
used to study. More will be said on these aspects later but we begin by considering the 
initial problem of investigating the possibility of a limit cycle in a feedback system 
using the DF or S (sinusoidal) DF as it is often named.  
 
Consider the autonomous feedback system shown in Figure 1 containing a single static 
nonlinearity ( )n x  and linear dynamics given by the transfer function 

c 1( ) ( ) ( )G s G s G s= . If a limit cycle exists in the autonomous system with the output ( )c t  
approximately sinusoidal, then the input ( )x t  to the nonlinearity might also be expected 
to be sinusoidal. If this assumption is made the fundamental output of the nonlinearity 
can be calculated and conditions for the sinusoidal self-oscillation found, if the higher 
harmonics generated at the nonlinearity output are neglected. This is the concept of 
harmonic balance, in this case balancing the first harmonic only, which had previously 
been used by Physicists to investigate such aspects as the generation of oscillations in 
electronic circuits. The DF of a nonlinearity was therefore defined as its gain to a 
sinusoid, that is the ratio of the fundamental of the output to the amplitude of the 
sinusoidal input. Since the output fundamental may not be in phase with the sinusoidal 
input the DF may be complex. 

 

 
 

Figure 1: A simple nonlinear feedback system 
 
2. The Sinusoidal Describing Function 
 
Assume that in Figure 1 ( )  cosx t a θ= , where tθ ω= and ( )n x  is a symmetrical odd 
nonlinearity, then the output ( )y t  will be given by the Fourier series. 
 

( )
0

cos sinn n
n

y a n b nθ θ θ
∞

=

= +∑  

 
where 0n na b= =   for n  even, and in particular 
 

2

1 0
(1/ ) ( ) cos   a y d

π
π θ θ θ= ∫  (1) 
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and 
2

1 0
 (1/ ) ( ) sin  b y d

π
π θ θ θ= ∫  (2) 

 
The fundamental output from the nonlinearity is 1 1cos sina bθ θ+ , so that the DF is 
given by  
 

1 1( ) ( -  ) /N a a jb a=  
 
which may be written 
 

p q( ) ( )  ( )N a N a jN a= +   
 
where 
 

p 1 q 1( ) /   and   ( ) - /  N a a a N a b a= =   
 
Alternatively, in polar co-ordinates 
 

( )( ) ( ) j aN a M a e ψ=   
 
where  
 

2 2 1/ 2
1 1( ) (   ) /M a a b a= +  

and  
 

-1
1 1( ) - tan ( / )a b aψ = .  

 
If ( )n x  is single valued it is easily shown that 1 0b =  and 
 

/ 2

1 0
(4 / ) ( ) cosa y d

π
π θ θ θ= ∫  (3) 

 
giving 
 

/ 2

1 0
( ) ( / ) (4 / ) ( ) cosN a a a a y d

π
π θ θ θ= = ∫  (4) 

 
Although Eqs. (1), (2) are an obvious approach to the evaluation of the fundamental 
output of a nonlinearity, they are somewhat indirect, in that one must first determine the 
output waveform ( )y θ  from the known nonlinear characteristic and sinusoidal input 

waveform. This is avoided if the substitution -1cos ( / )x aθ = is made; in which case, 
after some simple manipulations, it can be shown that 
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1 p0
(4 / ) ( ) ( )

a
a a xn x p x dx= ∫  (5) 

1 q0
(4 / ) ( )

a
b a n x dxπ= ∫  (6) 

 
The function ( )p x  is the amplitude probability density function of the input sinusoidal 
signal and is given by 
 

2 2 -1/ 2( ) (1/ )( - )p x a xπ=  
 
and the nonlinear characteristics p ( )n x  and q ( )n x , called the in-phase and quadrature 
nonlinearities, are defined by 
 

p 1 2( ) [ ( ) ( )] / 2n x n x n x= +  
 
and 
 

q 2 1( ) [ ( ) - ( )] / 2n x n x n x=  
 
where 1( )n x  and  2 ( )n x  are the portions of a double valued characteristic traversed by 
the input for 0x >  and 0x < respectively. For a single-valued characteristic, 

1 2( ) ( )n x n x= , so that p ( ) ( )n x n x=   and q ( ) 0n x = . Also integrating Eq. (5) by parts 
gives 
 

1/ 2
2 2

1 0
(4 / ) (0 ) (4 / ) '( )( - )

a
a n a n x a x dxπ π+= + ∫  (7) 

 
where 

0
'( ) ( ) /  and (0 ) lim ( )n x dn x dx n n

ε
ε+

→
= = ; a useful expression for obtaining DFs for 

linear segmented characteristics. 
 
An additional advantage of using Eqs. (5) and (6) is that they easily yield proofs of 
some interesting properties of the DF for symmetrical odd nonlinearities. These include 
the following: 
 
 1. For a double-valued nonlinearity the quadrature component q ( )N a  is 

proportional to the area of the nonlinearity loop, that is: 
  2

q ( ) -(1/ )N a a π=  (area of nonlinearity loop) 
 2. For two single-valued nonlinearities ( )  n xα and ( )n xβ , with 

( )  ( )n x n xα β<   
  for all 0 x b< < , then ( )  ( )N a N aα β<  for input amplitudes a  less than b  
 3. For the sector bounded single-valued nonlinearity that is 

1 2( ) ( )k x n x k x< < for all 0 x b< <  then 1 2( )k N a k< <  for  input 
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amplitudes a  less than b . This is the sector property of the DF and it 
also applies for a double-valued nonlinearity if ( )N a  is replaced by 

( )M a . 
 
When the nonlinearity is single valued, it also follows directly from the properties of 
Fourier series that the DF, ( )N a , may also be defined as: 
 
 1. The variable gain, K , having the same sinusoidal input as the nonlinearity, 

which minimizes the mean squared value of the error between the output 
from the nonlinearity and that from the variable gain 

 2. The covariance of the input sinusoid and the nonlinearity output divided by 
the variance of the input 

 
- 
- 
- 
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