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Summary 

 

Celestial Mechanics has followed the development of humankind from antiquity to 

space exploration age. After a short review of the cosmological models dating back to 

ancient Greeks, we proceed to present the main achievements which led to modern 

Celestial Mechanics. First, we describe Kepler’s laws which explain how planets move 

around the Sun, thanks to Newton’s gravitational force. Despite the fact that they were 

discovered in the XVII century, these laws provide interesting tools for managing a 

spacecraft trajectory, like the so–called Hohmann transfers and the gravity assist 

technique. Then we present perturbation theory developed in the XVIII century, which 

is an extremely important tool in Celestial Mechanics: for example, it led to the 

discovery of Neptune, to the computation of the perihelion’s precession as well as to 

accurate lunar ephemerides. Stability results can be obtained thanks to the outstanding 

theories developed in the XX century by Kolmogorov, Arnold, Moser (KAM theory) 

and Nekhoroshev, that we shortly present, together with some of their applications to 

Celestial Mechanics.  

 

1. Introduction 

 

Celestial Mechanics is devoted to the study of the motion of the celestial bodies which 

influence each other, mainly due to the gravitational law. This discipline has born and 

developed together with humankind: the computation of the succession of seasons was 

of fundamental importance for the survival of human race, the prediction of the 

phenomena of the sky like eclipses is as old as Babylonian people, the determination of 

the position on a ship in the sea relied on the knowledge of the position of stars and 
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planets. These are just a few reasons which led scientists to study the dynamics of the 

celestial bodies and to develop cosmological models. During antiquity these models 

were based on the assumption that the Earth was at the center of the cosmos and that all 

bodies (Sun and planets included) should move on spheres and circles, being these the 

most symmetric and perfect geometrical shapes. This cosmological model survived for 

several centuries, until Copernicus made his revolution by dethroning the Earth at the 

center of the cosmos, replacing it by the Sun and letting the Earth move around the Sun. 

The Copernican revolution was followed by giants of science like Galileo, Kepler and 

Newton.  

 

During the last centuries, Celestial Mechanics has profited of the observational 

discoveries to test the theoretical results and, conversely, astronomy has used the 

mathematical theories to make new observations and discoveries. The interplay between 

observations, technological advancements and Celestial Mechanics is even more evident 

when looking at the last 100 years, as shown in the timeline below.  

 

 
 

Figure 1. Timeline showing interplay between observations, technological 

advancements and Celestial Mechanics 

 

When Lagrange discovered the triangular equilibrium positions, he thought that it was a 

nice mathematical result without any physical application. On the contrary, the first 

asteroid in the triangular position, belonging to the so–called Trojan asteroids, was 

discovered in 1906 and nowadays several space missions take advantage of the collinear 

and triangular Lagrangian points. Perturbation theories, started in the XVIII century, led 

to the discovery of Neptune in 1846 and later contributed to the discovery of Pluto in 

1930. Around the middle of the XX century, outstanding mathematical results, 

motivated by the investigation of the stability of the solar system, were developed by 

A.N. Kolmogorov, V.I. Arnold, J. Moser (the so–called KAM theory) and later by N.N. 

Nekhoroshev. Chaos theory, originally discovered by H. Poincaré during his studies on 

the three–body problem, started its golden age when computers appeared. The butterfly 

effect, originated by computer simulations on differential equations describing a 

meteorological system, becomes the paradigm of chaos: a small change of the initial 

conditions (like a flap of the butterfly’s wings) might provoke a big challenge (like a 

tornado at several miles of distance). 

 

The era of the space missions started with the launch of the Sputnik in 1957; this event 

opens a new branch of Celestial Mechanics, called Astrodynamics. The subsequent 
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advent of faster and cheaper computers, as well as the development of symplectic 

integrators, gives another big impulse to Celestial Mechanics. Finally, the last decade of 

the XX century was marked by two astronomical epochal discoveries: the Kuiper belt in 

1992 and the first extra–solar planetary system in 1995. These discoveries have 

provoked a new view of the solar system and of its dynamical behavior, culminated 

with the IAU (International Astronomical Union) assembly in 2006, which excluded 

Pluto from the list of planets and re-defined the whole solar system. 

 

2. From Ptolemy to Copernicus 

 

Thanks to their geometrical symmetry, circles and spheres dominated the cosmological 

models developed during antiquity. Ptolemy’s cosmology was in fact based on the 

assumption that the Earth was located at the center of the cosmos and that the dynamics 

of the celestial bodies could be explained by using suitable combinations of circles, 

known as epicycles and deferents. Fourteen centuries were needed to leave the 

Ptolemaic viewpoint and to embrace the Copernican model.  

 

2.1. Epicycles and Deferents 

 

The theories of ancient Greeks were dominated by the idea of providing a scientific 

proof of the perfection of Nature. Due to their symmetry, the most important geometric 

forms are the circle (in the plane) and the sphere (in the space); as a consequence, 

ancient theories were typically based on these forms by assuming a spherical structure 

of the universe as well as a circular motion of the celestial bodies. The use of spheres to 

represent the cosmos provides the best tool to get the geometric perfection of the 

universe. The sky appears like an enormous sphere with center in the Earth; on this 

sphere one can find the fixed stars, namely the bodies whose positions appear unaltered 

in time. The big sphere representing the sky is formed by crystalline and unbreakable 

material, in contradiction to the materials which form the known worlds according to 

the Aristotelian physics: air, water, earth and fire. The Sun, Moon and planets live 

within this sphere and they move on concentric and transparent shells. Within each 

planetary shell, the motion of the celestial bodies is represented by circles, each one run 

with constant velocity. According to these philosophical–scientific lines of thought, 

Ptolemy (ca. 100–170 A.C.) provided his ideas in the impressing opera titled 

―Almagest‖, which means ―The Great Treatise‖. Following Aristotle (384–322 B.C.) 

and the other predecessors, he builds up a model of the universe which appears to be 

geometrically perfect. Ptolemy’s cosmology is based on the following assumptions:  

 

 The universe has a spherical shape;  

 The Earth is a sphere;  

 The Earth is at the center of the universe and it does not move;  

 All other celestial bodies move on spherical shells centered on the Earth;  

 The size of the Earth is negligible compared to the distance to the fixed stars.  

 

The Earth is placed at the center of the cosmos and it is surrounded by a first spherical 

shell on which the Moon moves; going farther from the Earth, on the next shell one 

finds Mercury and at higher distances the shells of Venus, the Sun, Mars, Jupiter and 

Saturn are placed. Finally, one finds the shell corresponding to the fixed stars. The 
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Ptolemaic vision persists during fourteen centuries, despite the fact that the astronomical 

observations showed several discrepancies with the cosmological theory. In fact, the 

motion of some planets, as seen from the Earth, exhibits irregularities: an observer 

located on the Earth’s surface has the perception of the planet as moving in one 

direction on the celestial sphere, then stopping and coming back on a path along a 

retrograde direction. Such behavior will be later explained as the result of a combined 

effect of the motion of the Earth and of the planet around the Sun. Nevertheless, in 

antiquity such explanation was not consistent with the assumption of a steady Earth at 

the center of the cosmos. 

 

Despite the fact that the astronomical observations contradict the assumption of a 

uniform, circular motion of the planets around the Earth, the idea of a harmonic 

dynamics of Nature, based on the perfect regularity of a circular orbit run with uniform 

velocity, dominated the theories of planetary motions within Greek culture. In order to 

keep the assumptions unaltered, but at the same time to have a consistency between 

theory and observations, Greek scientists developed astronomical models based on 

suitable combinations of circular trajectories on which a uniform motion takes place. 

First, Apollonius from Perga (ca. 262 BC –- ca. 190 BC), a Greek geometer and 

astronomer, invented a model according to which the planets were moving on circular 

orbits whose center did not coincide exactly with the center of the Earth. Since such 

theory was not sufficient to explain the anomalies shown by the astronomical 

observations, in particular the variation of the velocities, stations and retrogradations, 

Apollonius modified his model by assuming that the anomalous planet was rotating 

with uniform motion on a circle, called epicycle, whose center was moving on another 

circle, named deferent, with center in the Earth (compare with Figure 2a).  

  

 
 

Figure 2. a) The model of epicycles and deferents developed by Apollonius from Perga. 

b) The theory of equants developed by Ptolemy. 

 

Inheriting the conjectures by Apollonius and having at disposal the important 

astronomical observations performed by Hypparcus (ca. 190–120 BC), in his 

―Almagest‖ Ptolemy introduced a variation of the model based on epicycles and 

deferents. More precisely, he assumed that a planet was moving on a circle with center 

C  on a trajectory run with variable velocity; he defined a point A , called equant, whose 

distance from the center is equal to that of the Earth from C  (see Figure 2b). Ptolemy’s 
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model assumed that the motion of the planet occurred in such a way that on observer 

located in A  could see the planet to revolve with constant velocity with respect to the 

equant A . As a consequence, an observer located on the Earth sees the planet moving 

slowly when it is in the region closer to the equant and moving faster otherwise. It is 

relevant to underline that in this model the Earth is still kept fixed. According to 

Ptolemy’s model of the planetary motions, the variation of velocities of the planets as 

observed by the Earth is justified by the construction with epicycles, deferents and 

equants. The common ground of each model is the use of a suitable combination of 

circles, in order to guarantee the philosophical belief of a perfect symmetry and 

harmony of the cosmos. 

 

2.2. The Copernican Revolution 

 

The breakthrough of the Ptolemaic model came through the opera ―De Revolutionibus 

Orbium Caelestium‖ by Nicolaus Copernicus (1573–1543). Indeed, the idea that the 

Earth could not be at the center of the cosmos was already predicted in antiquity by 

Aristarchus of Samos (310 BC –- ca. 230 BC), who placed the Sun at the center of the 

homocentric spheres. Nevertheless, the spectacular contribution of Copernicus consisted 

in developing a mathematical theory allowing us to explain the dynamics of the planets 

in compliance with the astronomical observations. The main assumption was that the 

planets were rotating around the Sun, instead than around the Earth as conjectured by 

the Ptolemaic theory. Copernicus’ model allows us to split the solar system in internal 

planets (Mercury and Venus, observable at sunshine and early morning) and external 

planets (from Mars on). 

 

If we admit that also the Earth can move in the sky, the explanation of the anomalies 

concerning the orbits of the planets, like the variation of velocities, stations and 

retrogradations, can be interpreted at the light of a heliocentric model. Using Copernicus 

words: ―We must conclude, then, that their uniform motions [of the planets] appear to 

us as irregular either because they take place around different axes, or else because the 

Earth is not at the center of their circles of revolution‖. 

 

The Sun takes the major role and it is placed at the center of the universe. In ―De 

Revolutionibus Orbium Caelestium‖ Copernicus states: ―In the center rests the Sun. For 

who would place this lamp of a very beautiful temple in another or better place than this 

wherefrom it can illuminate everything at the same time‖. 

 

Copernicus finally gives the explanation for the dynamics of the solar system: by using 

his heliocentric model, one can conclude that the planets move around the Sun and that 

the Earth itself orbits around the Sun, taking one year to make a full revolution.  

 

2.3. The Astronomical Revolution 

 

Due to the religious and political censorship, the ideas of Copernicus were considered a 

mere theoretical hypothesis. Nevertheless the ―De Revolutionibus Orbium Caelestium‖ 

was the beginning of a new era, where some far–sighted scientists like Giordano Bruno, 

Galileo Galilei and Johannes Kepler understood the validity of the Copernican model in 

order to let science progress in that direction.  
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A fundamental role was played by the Danish astronomer Tycho Brahe (1546–1601). 

Although he was not a supporter of the Copernican system, Brahe contributed to the 

scientific progress by performing an intense observational campaign of planets and 

stars. Thanks to his brilliant discovery of a supernova in 1572, the king of Denmark and 

Norway supported economically a project to build an astronomical observatory in the 

Hveen island. The new observatory was called Uraniborg; there Brahe classified 

several celestial bodies with an astonishing accuracy. Beside stars, Brahe observed 

every day the position of the Sun and the planets. His data formed the basis for the 

successive researches of his young collaborator, the German mathematician and 

astronomer Johannes Kepler (1571–1630). 

 

The happily years of astronomy and physics continued with Galileo Galilei (1564–

1642). He gave a great impulse for the development of a new way to approach the 

scientific research. Galileo studied the physics of Nature in all its aspects and encoded it 

using mathematical laws. For the first time in humankind, Galileo used a telescope (just 

discovered at his times) to observe the sky.  

 

He started an incomparable observational campaign, which leaded to astonishing 

discoveries. Among the others, Galileo studied the Moon which appeared to be 

characterized by mountains and craters, he classified several stars, he observed the 

Milky Way and Sun spots, he discovered the main satellites of Jupiter (Io, Europa, 

Ganymede and Callisto, later named Galileian satellites), he determined the phases of 

Venus and he noticed around Saturn some bulges close to the planet (with better 

instruments they were later distinguished as being the famous Saturn’s rings). 

 

In his masterpiece titled the ―Dialogue Concerning the Two Chief World Systems‖, 

Galileo supports the Copernican model by providing scientific arguments based on his 

astronomical observations. His results and the new approach to the study of Nature 

allowed Kepler and Newton to provide a comprehensive understanding of the laws 

governing the planetary motions.  

 

3. Kepler’s Laws and Hohmann Transfers 

 

3.1. Kepler’s Laws 

 

The changeover of the scientific progress continues with Johannes Kepler; he endorses 

the Copernican theory and uses the data provided by the monumental work of Tycho 

Brahe in order to formulate, without even using a telescope, some laws describing the 

motion of the planets around the Sun. The first problem encountered by Kepler is the 

necessity to neglect the assumption that the planetary orbits are circular. Being reluctant 

to make this hypothesis, in his work titled ―Mysterium Cosmographicum‖ Kepler 

develops a complicated formulation of the planetary motions, still constrained to a 

circular orbit, but assuming the heliocentric model. However, the data provided by 

Brahe showed that the distance of Mars from the Sun was in some points less than that 

obtained assuming that Mars moves on a circular orbit. Kepler understood that the 

initial assumptions were wrong and after 70 attempts made during 5 years, he was able 

to formulate three fundamental laws which clarify how planets move around the Sun. 

The first two laws were stated in the work ―Astronomia Nova‖, while the third law was 
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given in the ―Harmonices Mundi‖. 

 

Over several years Kepler studied Mars, whose orbit is elliptic, but almost circular, 

being the eccentricity very small. A very high degree of precision was then necessary in 

order to characterize the trajectory of Mars. Although he was using poorly accurate 

instruments, Kepler was able to determine that the orbit of Mars is not circular. The 

characterization of the planetary orbits is the content of Kepler’s first law; however such 

law does not provide information about the velocity with which the orbit is run and it 

does not yield the dimension of the ellipse with respect to the time needed by the planet 

to run a full trajectory around the Sun. These quantities are provided by the second and 

third laws, thus completing the mosaic of the planetary dynamics. In fact, Kepler’s 

second law states that the planet is faster when it is closer to perihelium (namely, the 

point on the orbit closer to the Sun) and it is lower at aphelion (the point of the orbit 

farther from the Sun). Translated in geometric terms, Kepler’s second law is equivalent 

to state that the planet spans equal areas during the same time intervals.  

 

Once he discovered the shape of the orbit and the size of the velocity along the 

trajectory, Kepler determined the relation between the time necessary to run an orbit and 

its size: he established a proportionality relation between the square of the period of 

revolution and the cube of the semimajor axis. The consequence of this law is very 

important: the more is the distance of the planet from the Sun, the largest is the time 

needed to run a full orbit. 

 

To summarize, the formulation of the three Kepler’s laws is the following:  

 

I Law: The orbit of a planet around the Sun is elliptical and the Sun is placed at one of 

the two foci.  

II Law: The planet describes equal areas in equal time intervals.  

III Law: The square of the period of revolution is proportional to the cube of the 

semimajor axis.  

 

As stated before, Kepler’s laws show that the solution of the two–body problem is an 

ellipse, provided that the total mechanical energy is negative. One can prove that the 

two–body problem admits also parabolic orbits, whenever the energy is zero, and 

hyperbolic trajectories for positive energies. 

 

- 

- 

- 
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