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Summary 

 

There are two main types of resonance phenomena in planetary systems involving 

orbital motions: (i) mean motion resonance: This is intuitively the most obvious type of 

resonance; it occurs when the orbital periods of two planets are close to a ratio of small 

integers; (ii) secular resonance: this is a commensurability of the frequencies of 

precession of the orientation of orbits, as described by the direction of pericenter and the 

direction of the orbit normal. It is often possible to identify an unperturbed subsystem 

and separately a resonant perturbation, which facilitates the use of perturbation theory 

and other analytical and numerical tools. Resonances can be the source of both stability 

and instability, and play an important role in shaping the overall orbital distribution and 

the ‘architecture’ of planetary systems. This chapter provides an overview of these 

resonance phenomena, with simple models that elucidate our understanding.  

 

1. Introduction 

 

Consider the simplest planetary system consisting of only one planet, of mass 1m , 

orbiting a star of mass 0m . Let 0r  and 1r  denote the inertial coordinates of these two 

bodies. This system has six degrees of freedom, corresponding to the three spatial 

degrees of freedom for each of the two bodies. Three of these degrees of freedom are 

made ignorable by identifying them with the free motion of the center-of-mass. The 

remaining three degrees of freedom can be identified with the coordinates of the planet 

relative to the star and the problem is reduced to the familiar planetary problem 

described by the Keplerian Hamiltonian, 
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where  is the universal constant of gravitation, 1 2 r r r  is the position vector of the 

planet relative to the star, /m d dtp r  is the linear momentum of the reduced mass, 
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and 0 1M m m   is the total mass. In this Hamiltonian description, r  and p  are 

canonically conjugate variables. The general solution of this classic two-body problem 

is well known in terms of conic sections; the bound solution is called the Keplerian 

ellipse. In this chapter, we will be concerned with only the bound orbits. 

 

The three degrees of freedom for the Kepler system can also be described by three 

angular variables, one of which measures the motion of the planet in its elliptical orbit 

and the other two describe the orientation of the orbit in space. The size, shape and 

orientation of the orbit are fixed in space, and there is only one non-vanishing 

frequency, namely, the frequency of revolution around the orbit. The orbital elements 

illustrated in Figure 1 are related to the set of action-angle variables for the two-body 

problem derived by Charles Delaunay (1816–1872) [see Chapter 1], 
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where a , e  and i  are the semimajor axis, eccentricity and inclination, respectively, of 

the bound Keplerian orbit. The mean anomaly, , is related to the orbital frequency 

(mean motion), n , which in turn is related to the semimajor axis by Kepler’s third law 

of planetary motion:  
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In Eqs. (3), , ,L G H  are the action variables and , ,   are the canonically conjugate 

angles, known as the mean anomaly, argument of pericenter and longitude of ascending 

node, respectively. As defined in Eq. (3), the action variables have dimensions of 

specific angular momentum.  

 

The Kepler Hamiltonian can be expressed in terms of the orbital elements and the 

Delaunay variables:  
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For the case of nearly co-planar and nearly circular orbits, we will also make use of a set 
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of modified Delaunay variables defined by the following canonical set: 
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Figure 1. The Keplerian orbit: a planet, m , traces out an ellipse of semimajor axis a  

and eccentricity e , with the Sun at one focus of the ellipse (which is the origin of the 

heliocentric coordinate system indicated here). The plane of the orbit has inclination i  

with respect to the fixed reference plane, and intersects the latter along the line of nodes, 

NN , where ON  defines the ascending node; the longitude of ascending node,  , is 

the angle from the reference direction x  to ON ; it is measured in the reference plane. 

The pericenter is at P , so the distance OP is  1a e ; the apocenter is at P and the 

distance OP’ is    1a e ; the argument of perihelion   is the angle from ON  to OP ; it 

is measured in the orbital plane. The true anomaly is the instantaneous angular position 

of the planet measured from OP . 

 

For multiple planets around the star, it is desirable to describe the system as a sum of 

two-body Keplerian Hamiltonians plus the smaller interaction part (the potential energy 

of the planet-planet interactions). However a similar approach with coordinates relative 

to the central mass (called ‘heliocentric coordinates’ in the context of the solar system, 

more generally ‘astrocentric coordinates’) does not yield a Hamiltonian that is a sum of 

two-body Keplerian parts plus an interaction part, as we might naively expect. This is 

because the kinetic energy is not a diagonal sum of the squares of the momenta in 

relative coordinates. This problem is overcome by using a special coordinate system 

invented by Carl Jacobi (1804–1851), in which we use the coordinates of the center-of-

mass, and then, successively, the coordinates of the first planet relative to the star, the 

coordinates of the second planet relative to the center-of-mass of the star and the first 

planet, and so on. For a system of N  planets orbiting a star, let    0,1,i i N r  denote 

the coordinates of the star and the N  planets in an inertial reference frame; then the 
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Jacobi coordinates are given by  
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and the conjugate momenta, 
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Then the Hamiltonian for the N –planet system is given by  
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and 0ir  is the distance between the star and the thi  planet, and ijr  is the distance 

between planet i  and planet j . Because 0ir  and ijr  do not depend upon the center-of-

mass position, this Hamiltonian is independent of 0r , and it follows that 0p  is a 

constant. Thus, the first term in Eq. (9), which is the center-of-mass kinetic energy, is a 

constant. By construction, the remaining kinetic energy terms are a diagonal sum of the 

squares of the new momenta. We can now obtain a Hamiltonian that is a sum of N  

unperturbed Keplerian Hamiltonians and a small perturbation:  
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In deriving Eq. (10) from Eq. (9), we omitted the constant center-of-mass kinetic energy 

term and we added and subtracted 0

1

N i

i
i

Gm m

r . In Eq. (10), we can recognize the first 

series as a sum of N  independent Keplerian Hamiltonians. The second series describes 

the direct planet-planet interactions. The last series consists of terms that are differences 

of two large quantities; these difference terms are each of order ~ i jm m , i.e., of the 

same order as the terms in the direct planet-planet interactions, and is referred to as the 

‘indirect’ perturbation. Thus, the Hamiltonian of Eq. (10) is of the form  
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which is suitable for the tools of perturbation theory.  
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An important special case of the perturbed system is when one of the bodies is of 

infinitesimal mass, a ‘test particle’. The test particle does not affect the massive bodies 

but is perturbed by them. Let the unperturbed orbit of the test particle be a Keplerian 

ellipse about 0m . Then the specific energy of the test particle can be written as a sum of 

its unperturbed Keplerian Hamiltonian, 0
tp

2

m

a
  , where the subscript tp abbreviates 

‘test particle’, and an interaction part owing to the perturbations from N  planets,  
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The perturbations, interaction , cause changes in the Keplerian orbital parameters. The 

Delaunay variables are of course no longer action-angle variables, but they provide a 

useful canonical set; we will make use of it in the following sections. Qualitatively, the 

perturbed Keplerian orbit gains two slow frequencies, the precession of the direction of 

pericenter and the precession of the line of nodes (equivalently, the pole) of the orbit 

plane; these are slow relative to the mean motion, n . 

 

Resonance 

 

A secular resonance involves a commensurability amongst the slow frequencies of 

orbital precession, whereas a mean motion resonance is a commensurability of the 

frequencies of orbital revolution. The timescales for secular perturbations are usually 

significantly longer than for [low order] mean motion resonant perturbations, but there 

is also a coupling between the two which leads to resonance splittings and chaotic 

dynamics. The boundaries (or separatrices) of mean motion resonances are often the 

sites for such interactions amongst secular and mean motion resonances.  

 

A mean motion resonance between two planets occurs when the ratio of their mean 

motions or orbital frequencies 1 2,n n  is close to a ratio of small integers,  p q p  

where 0p   and 0q   are integers. The case 0q   is sometimes called a corotation or 

co-orbital resonance; a prominent example in the solar system is the Trojan asteroids 

that share the mean motion of Jupiter but librate approximately 60  from Jupiter’s 

mean longitude. When 0q  , it is called the order of the resonance; this is because the 

strength of the resonant potential is proportional to qe  or qi  when the eccentricities e  

and inclinations i  of the planets are small. Inclination resonances occur only for even 

values of q . In a resonant configuration, the longitude of the planets at every 
thq  

conjunction librates slowly about a direction determined by the lines of apsides and 

nodes of the planetary orbits. In terms of the action-angle variables for the Keplerian 

Hamiltonian, this geometry is naturally described by the libration of a so-called 

resonant angle which is a linear combination of the angular variables. For example, for 

the 2:1 mean motion resonance between a pair of planets, two possible resonant angles 

are  
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1 2 1 1 2 2 1 22 , 2             . (13) 

 

Close to the 2:1 mean motion resonance, both these angles have very slow variation 

(slow in comparison with the mean motions). The planet pair is said to be in resonance 

if at least one resonant angle exhibits a libration; in this case, the long term average rate 

of the resonant angle vanishes, and we speak instead of its ‘libration frequency’. If a 

resonant angle does not librate but rather varies over the entire range 0 to 2  cyclically, 

we speak of its ‘circulation frequency’.  

 

How close does the mean motion ratio need to be for a planet pair to be considered 

resonant? There is not a precise answer to this question. A rough answer is provided by 

an estimate of the range, n , of orbital mean motion over which it is possible for the 

resonant angle to librate. For nearly circular orbits, and for 0 2q  , this estimate is 

given by  
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where   is the planet-Sun mass ratio.  

 

Amongst the major planets of the solar system, no planet pair exhibits a resonant angle 

libration, although several are close to resonance: Jupiter and Saturn are within 1% of a 

5:2 resonance, Saturn and Uranus are within 5% of a 3:1 resonance, and Uranus and 

Neptune are within 2% of a 2:1 resonance. In the first extra-solar planetary system to be 

discovered, the three-planet system PSR B1257+12, the outer two planets are within 2% 

of a 3:2 resonance. None of these is close enough to exact resonance to exhibit a 

resonant angle libration. Amongst the several hundred extra-solar multiple planet 

systems detected by the Kepler space mission recently, it is estimated that at least ~30% 

harbor near-resonant pairs. One extra-solar planetary system, GJ 876, with four planets, 

appears to have at least two pairwise 2:1 resonances close enough to be in libration. In 

some of these cases, the nearness to resonance causes orbital perturbations large enough 

to be detectable, and has allowed measurements of the planetary masses and orbital 

inclinations. 

 

Somewhat in contrast with the planets, several pairs of satellites of the solar system’s 

giant planets exhibit librations of resonant angles; these include the Galilean satellites 

Io, Europa and Ganymede of Jupiter, and the Saturnian satellite pairs Janus and 

Epimetheus, Mima and Tethys, Enceladus and Dione, Titan and Hyperion. The 

existence of these near-exact commensurabilities, as evidenced by the librating resonant 

angles, in the satellite systems has been a subject of much study over the past few 

decades. These are now generally understood to be the consequence of very small 

dissipative effects which alter the orbital semimajor axes sufficiently over very long 

timescales so much so that initially well separated non-resonant orbits evolve into an 

exact resonance state characterized by a librating resonant angle. Once a resonant 

libration is established, it is generally stable to further adiabatic changes in the 

individual orbits due to continuing dissipative effects. This hypothesis provides a 

plausible explanation for the most prominent cases of mean motion resonances amongst 
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the Jovian and Saturnian satellites. However, the Uranian satellites present a challenge 

to this view, as there are no exact resonances in this satellite system, and it is 

unsatisfactory to argue that somehow tidal dissipation is vastly different in this system. 

An interesting resolution to this puzzle was achieved when the dynamics of orbital 

resonances was analyzed carefully and the role of the small but significant splitting of 

mean motion resonances and the interaction of neighboring resonances was recognized. 

Such interactions can destabilize a previously established resonance, so that mean 

motion resonance lifetimes can be much shorter than the age of the solar system. 

Studies of the Jovian satellites, Io, Europa and Ganymede, also suggest a dynamic, 

evolving resonant orbital configuration over the history of the solar system. 

 

Another notable example of resonance in the solar system is the dwarf planet Pluto 

whose orbit is resonant with the planet Neptune, and exhibits a libration of a 3:2 

resonant angle; the origin of this mean motion commensurability is now understood to 

be due to the orbital migration of Neptune driven by interactions with the disk of 

planetesimals left over from the planet formation era. Studies of this mechanism have 

led to new insights into the early orbital migration history of the solar system’s giant 

planets, and it is a very active area of current research. 

 

 
 

Figure 2. The semimajor axis distribution of asteroids in the main asteroid belt. The 

locations of several resonances are indicated near the top. (Data for all numbered 

asteroids from http:hamilton.dm.unipi.it/astdys/; synthetic proper elements computed 

numerically.) 

 

The population of minor planets in the main asteroid belt in the solar system offers one 

of the most well-studied examples of the role of orbital resonances in shaping the 

distribution of orbits. Figure 2 plots the distribution of semimajor axis of asteroids in the 

main asteroid belt. (Note that some of the non-uniformities in the number distribution 

are attributable to observational selection effects: astronomical surveys for faint bodies 

in the solar system remain quite incomplete, so that many smaller and more distant 

objects remain undiscovered.) The inner edge of the asteroid belt is defined by a secular 

resonance, known as the 6  secular resonance, in which the apsidal secular precession 
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rate of an asteroid is nearly equal to the apsidal precession rate of Saturn. There are 

several prominent deficits coinciding with the locations of mean motion resonances 

with Jupiter; this correlation was first noted by Daniel Kirkwood (1814–1895) and the 

deficits are known as the Kirkwood Gaps. Interestingly, these gaps are significantly 

wider than would be anticipated by simple estimates of the resonant widths, such as in 

Eq. (14). Deeper analyses have revealed that chaotic dynamics owed to the small 

secular variations of the orbit of Jupiter are very important in widening the Kirkwood 

gaps, and, beyond that, even the early orbital migration history of Jupiter and Saturn is 

recorded in the widths and shapes of these gaps. 

 

There also exist orbital resonances that do not neatly fall into the categories of ‘mean 

motion resonance’ or ‘secular resonance’. For example, the angular velocity of the 

apsidal precession rate of a ringlet within the C-ring of Saturn is commensurate with the 

orbital mean motion of Titan, the so-called Titan 1:0 apsidal resonance. Two retrograde 

moons of Jupiter, Pasiphae and Sinope, exhibit a 1:1 commensurability of their perijove 

apsidal precession rate with Jupiter’s heliocentric apsidal precession rate. So-called 

three-body resonances which involve a sequence of commensurable mean motions of a 

test particle with two planets have been identified as a source of weak chaos and orbital 

instability on Gigayear timescales; these may explain the absence of asteroids in some 

regions of the solar system that otherwise appear to be stable. A class of resonances 

known as ‘super resonances’ or ‘secondary resonances’ have been identified in the very 

long term evolution of planetary and satellite orbits; these are defined by small integer 

ratio commensurabilities between the libration frequency of a resonant angle and the 

circulation frequency of a different resonant angle. Pluto’s orbit and the Uranian 

satellite system provide two well-studied examples of this type of resonance. 

 

- 

- 
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