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Summary 
 
This article describes the basics of crystal structure determination and refinement from 
X-ray diffraction data, with a focus on applications in mineralogy. 
 
1. Introduction 
 
Since the performance of the first X-ray diffraction experiments on a single crystal in 
1912, X-ray crystallography has been of major importance in natural sciences and 
especially in mineralogy. X-ray diffraction provided the ideal means to understand 
structures of minerals (and other crystalline matter) on an atomic scale. It thus 
established relationships between the crystal structure and the physical and chemical 
properties of the material under investigation. In other cases it related the crystal 
structure to the special thermodynamical conditions under which a mineral (or a rock) 
was formed, and therefore provided important information for petrology and geology. In 
particular the powder diffraction method allowed the unambiguous identification of 
minerals and––with the introduction of quantitative phase analysis––also the 
quantification of the different phases of a mixture, for example, a rock. 
 
The structure determination of minerals exhibits several typical difficulties. Often the 
chemical composition is quite variable, requiring a distinct contrast in scattering power 
of the different elements to allow for successful identification. Two (or more) chemical 
elements can occupy the same crystallographic site. This frequently leads to different 
degrees of long- and short-range ordering, which often implies the existence of very 
weak intensities or diffuse scattering, making X-ray crystallography on minerals far 
more challenging than crystallography on synthetic materials. This is especially true for 
the wide range of alumosilicates, which include most of the rock-forming minerals. 
 
With the availability of neutron and synchrotron radiation sources, new fields of 
research were developed. The entirely different dependence of the scattering power on 
the order number of the elements for neutron than for X-ray diffraction makes it 
possible to distinguish between neighboring elements in the periodic table. Furthermore, 
neutron diffraction provides the means to determine magnetic structures. On the other 
hand, the high brilliance, low divergence, and wavelength tunability of synchrotron 
radiation are of crucial importance for the detection of weak intensities, the 
measurement of crystals with very large unit cells, and allow use to be made of the 
effect of anomalous dispersion. In any case, the strongest impact is observed in the field 
of powder diffraction, where the two new sources enhance the resolution of a powder 
diffraction pattern by more than an order of magnitude compared with laboratory 
sources. Consequently, more complicated crystal structures can be solved with 
increasing accuracy by the powder method. Additionally the higher resolution makes it 
possible to extract detailed microstructural information on, for example, lattice strain or 
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domain size. 
 
This compact review of modern X-ray crystallography in mineralogy gives a basic 
introduction to the different methods and their applications. Both single-crystal and X-
ray powder diffraction procedures are included, with an emphasis on modern powder 
diffraction using synchrotron radiation. Wherever possible the focus is on applications 
directly related to mineralogical problems. 
 
Because of the restricted space for literature references only the most helpful sources 
used for the preparation of this review have been cited. 
 
2. The Diffraction of X-Rays 
 
In 1912 Friedrich, Knipping, and von Laue performed the first diffraction experiment 
using single crystals of copper sulfate and zinc sulfite. Based on these experiments Max 
von Laue developed his theory of X-ray diffraction. At the same time W.L. Bragg and 
W.H. Bragg performed their diffraction experiments, and in turn used an alternative, 
though equivalent, way of explaining the observed diffraction phenomena. Up to now 
what have become known as the “Laue conditions” and “Bragg equation” have formed 
the basis of X-ray diffraction of crystalline material, and it is therefore inevitable to start 
any monograph on X-ray crystallography with a short resume of the investigations 
carried out by these scientists. 
 
Like visible light, an X-ray beam is an electromagnetic wave characterized by an 
electric field vector E that is perpendicular to the direction of propagation, and a 
magnetic field vector H that in turn is perpendicular both to E and the direction of 
propagation. Yet the wavelength of an X-ray beam is considerably shorter than that of 
an optical wave: the spectra of visible light comprise the range from 4000 to 7000 Å, 
while X-rays have typically wavelengths between 0.1 to 10 Å. Because X-ray 
wavelengths are comparable to the interatomic distances within a crystalline material, 
one observes characteristic interactions between the X-rays and the ordered array of 
electrons in the crystal structure. These interactions make X-rays the most important 
source for the investigation of crystal structures. The nature of these interactions and the 
basic laws of diffraction will be explained in this article. 
 
If electromagnetic X-ray waves encounter an object, they are scattered by the electrons 
of the object. The field of the X-rays forces the electrons within the material to oscillate, 
and the electrons are in turn the starting point of secondary waves of the same frequency 
and wavelength as the primary waves. These waves are superimposed on each other, 
and if constructive interference occurs, it give rise to the different diffraction 
phenomena, which are generally strong if the distances within the object are comparable 
to the wavelength of the incoming beam. In addition the periodic nature of the atomic 
arrangement within a crystal gives rise to special diffraction phenomena, which are in 
many ways comparable to the diffraction of visible light by a refraction lattice. 
 
2.1. The Laue Equations 
 
To understand diffraction in a three-dimensional crystal it is helpful to concentrate on 
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the one-dimensional case first. Figure 1 shows a one-dimensional lattice consisting of a 
row of point-like scattering centers which are separated by a periodic distance a. If a 
plane wave hits such a row of points, every scatterer gives rise to a new secondary wave 
which propagates in a spherical manner. The individual scattered waves are 
superimposed on, and generally extinguish, each other. Only along the common 
tangents will the spherical waves oscillate with identical phases, and therefore interfere 
in a constructive way, forming a common diffracted wave. It can be seen in the figure 
that the planes of common tangents exist in various directions, which define the 
different diffraction orders. 
 

 
 

Figure 1. Diffraction of a plane wave by a row of point-like scatterers 
 

The diffracted waves of all orders have the same wavelength as the incoming primary 
beam. If one completes the figure in the third direction perpendicular to the plane of 
paper, it becomes evident that the resulting wavefront moves along a cone. 
 
Figure 2 shows the same conditions, but now the direction of the primary beam forms 
an arbitrary angle ϕa

0 with the diffracting array of points. The cone-like wavefront of 
the first order is shown. The diffracted beams that are perpendicular to this wavefront in 
turn form a cone with an opening angle of 2ϕa. The phase difference between two waves 
that have been diffracted by neighboring points is––in the case of the first diffraction 
order––exactly equal to the wavelength λ. Following the figure one can see that the 
phase difference is given by: 
 

0 0cos cos (cos cos )a a a as t a a aϕ ϕ ϕ ϕ λ− = − = − =  (1) 
 
 and for the second order 
 

0 0cos cos (cos cos ) 2a a a as t a a aϕ ϕ ϕ ϕ λ− = − = − =  (2) 
 
or generally 
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0 0cos cos (cos cos )a a a as t a a a hϕ ϕ ϕ ϕ λ− = − = − =  (3) 
 
where h is an integer. Considering now a three-dimensional lattice, it is evident that 
every lattice direction requires a similar condition. For the lattice vectors in the direction 
of the three lattice parameters a, b, c, these conditions are: 
 

0(cos cos )a aa hϕ ϕ λ− =  
0(cos cos )b bb kϕ ϕ λ− =  (4) 
0(cos cos )c cc lϕ ϕ λ− =  

 
These equations are called the Laue equations. ϕa

0, ϕb
0 and ϕc

0 are the angles between 
the incoming primary beam and the three basis vectors while ϕa, ϕb and ϕc are the 
angles between the basis vectors and the diffracted secondary beam; h, k, and l are 
integers. The equations for all other lattice directions are linear combinations from the 
above three, and accordingly no further conditions have to be defined. 
 
Diffraction from a three-dimensional lattice can only exist if the conditions (Eq. 1) are 
simultaneously fulfilled for all three directions. Whenever the condition is fulfilled for 
the direction of a basis vector, a cone of diffracted beams is formed, which opens in the 
direction of the corresponding vector. For two of these cones that open in different 
directions, a common beam only exists in the direction of their mutual intersection. In 
Figure 3, for example, the cone formed around the vector a and the second cone formed 
around the vector b have a common beam in the direction of k. 

 
 

Figure 2. Diffraction of a plane wave by a row of point-like scatterers 
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A third cone that opens around the vector c does not intersect with the former two, and 
does not contain the direction k. This proves that not all the three Laue conditions are 
fulfilled at the same time, and consequently there is no constructive interference 
between the three beams. If well-defined relationships exist between the lattice vectors, 
the primary beam direction, and the wavelength λ, a common direction k for the three 
cones of diffracted beams is observed. Only then are the three Laue equations 
simultaneously fulfilled, and constructive interference of the diffracted waves occurs. 
 
2.2. The Bragg Equation 
 
An alternative description for the diffraction of X-rays by a lattice plane was suggested 
by W.L. Bragg in 1912, and is known as the Bragg equation: 
 

2 sin( )n dλ⋅ = ⋅ ⋅ Θ  (5) 
 
with λ  as the wavelengths of the X-rays, d  as the interplanar spacing of parallel lattice 
planes, and 2Θ  as the diffraction angle. Figure 4 illustrates this relationship. 
 

 
 

Figure 3. Representation of the Laue conditions for the diffraction by a crystal lattice 
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Figure 4. Bragg diffraction on two consecutive lattice planes 
 

As mentioned above, the X-rays will be diffracted by the electrons of the atoms, which 
act as scattering centers by sending out spherical waves. Eq. 5 defines in which 
directions (2Θ), at a fixed value of λ and d, constructive interference of the scattered 
waves is possible. 
This is exactly the case if the extra distance traveled by ray 2 in Figure 4 is a multiple (n) 
of the wavelength. For simplicity, the number n may be included in the indexing of the 
set of lattice planes ( (222)= 2*(111) ) and consequently in the d spacing. 
 
Several relationships in crystallography directly follow from the Bragg equation (Eq. 5). 
It can be shown for instance that a constant error in 2Θ has a much stronger impact on 
the error in d spacing at low scattering angles than it has at high angles. Another 
consequence of the Bragg equation is that the resolution augments with increasing 
scattering angles. Relationships for strain and for the size of coherently scattering 
domains can also be derived. 
 
2.3. The Ewald Sphere 
 
The so-called Ewald construction or Ewald sphere is a useful tool to examine whether 
the diffraction condition for a reciprocal lattice point (see Section 6) is fulfilled or not, 
and is widely used in crystallography. Therefore the principle will be briefly outlined 
here. 
 
We imagine a sphere of radius 1/λ with the primary beam passing through the diameter 
IO (see Figure 5). The origin of the reciprocal lattice coincides with the point O. If the 
vector r*

H lies on the surface of the sphere, the corresponding lattice planes hkl lie 
parallel to IP and form an angle θ with the primary beam. The necessary condition to 
fulfill the Bragg equation is that the lattice point defined by the vector r*

H (which 
corresponds to the lattice planes hkl) must lie on the surface of the sphere with radius 
1/λ, which is called the Ewald sphere. 
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Figure 5. The Ewald sphere and the limiting sphere (in two dimensions) 
 

For X-rays and neutrons with wavelengths from 0.5 to 2Ǻ the Ewald sphere has an 
appreciable curvature with respect to the lattice planes. If a monochromatic primary 
beam and a crystal in arbitrary orientation are used, generally none of the reciprocal 
lattice points touches the surface of the Ewald sphere (excluding the origin of reciprocal 
space). Therefore, the different experimental techniques described below all try to bring 
as many reciprocal lattice points as possible onto the surface of the sphere (that is, into 
diffraction position). 
 
If r*

H > 2/λ it is not possible to observe the corresponding reflection H. This condition 
defines the “limiting sphere” with the center O and the radius 2/λ. Only lattice points 
within the limiting sphere can be brought into diffraction position. (This has 
consequences for the choice of the wavelength in a given experimental setup.) On the 
other hand if λ > 2amax (where amax is the largest period of the unit cell) then the 
diameter of the Ewald sphere is smaller than r*

min (the smallest period of the reciprocal 
lattice) and no lattice node can intercept the surface of the Ewald sphere. 
 
- 
- 
- 
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