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Summary 
 
The numerical methods that are used to solve the mathematical equations encountered 
in hydrodynamical models of ocean circulation are summarized. Special attention is 
paid to the specificities of ocean models compared to classical computational fluid 
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dynamics. Finite differences, finite elements, finite volumes, spectral methods are all of 
interest for ocean modeling and their basic properties, advantages and difficulties are 
highlighted. The problem of time-discretization, accuracy, stability as well as efficient 
algorithmic implementation is addressed and specific methods encountered in the 
present generation of models are outlined (mode-splitting, staggering, data assimilation). 
As for classical fluids dynamics, the equations governing the evolution of the 
hydrodynamics or ecosystem dynamics of the marine system have no general analytical 
solution, except in very simplified cases. Therefore, when even moderately complex 
systems are modeled, one rapidly has to resort to numerical methods to find 
approximate solutions to the governing equations. The present chapter describes some 
of the general methods that can be applied to the solution of partial differential 
equations similar to those encountered in ocean modeling. In particular, differences with 
methods of classical computational fluid dynamics are emphasized, explaining the 
reasons for developing dedicated numerical methods for ocean models. The presentation 
is limited to Eulerian methods since mot conservation laws are written in an Eulerian 
framework, the natural choice for the human observer. Presently, Lagrangian 
approaches are generally restricted to study of the dispersion of tracers in a given 
hydrodynamic field, which is itself modeled on an Eulerian grid.  
 
1. Introduction     
 
As for classical fluids dynamics, the equations governing the evolution of the 
hydrodynamics or ecosystem dynamics of the marine system have no general analytical 
solution, except in very simplified cases. Therefore, when even moderately complex 
systems are modeled, one rapidly has to resort to numerical methods to find 
approximate solutions to the governing equations. The present chapter describes some 
of the general methods that can be applied to the solution of partial differential 
equations similar to those encountered in ocean modeling. In particular, differences with 
methods of classical computational fluid dynamics are emphasized, explaining the 
reasons for developing dedicated numerical methods for ocean models. The presentation 
is limited to Eulerian methods since mot conservation laws are written in an Eulerian 
framework, the natural choice for the human observer. Presently, Lagrangian 
approaches are generally restricted to study of the dispersion of tracers in a given 
hydrodynamic field, which is itself modeled on an Eulerian grid.  

 
2. Conservation Equations 

 
Numerical methods in ocean modeling address the solution of equations of the type  
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where φ is a state variable, hv is the horizontal time-dependent velocity vector (defined 

at the scales of interest), φQ is the local source of ,vφ the vertical turbulent diffusion 
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coefficient for φ and Fφ the parameterization of sub-grid scale processes not taken into 
account in the vertical turbulence; typically these sub-grid scale processes are modeled 
by a lateral diffusion. 
 
This prototype of an evolution equation in oceanography is already reflecting the 
anisotropic nature of the flow in the sense that vertical turbulence is separated from 
lateral sub-grid scale parameterizations and that horizontal advection is separated from 
vertical advection, due to the strong anisotropy of the flow.  
 
The form of the equation is however classical, in the sense that the evolution of the state 
variable is governed by a first order derivative in time (trend in time) related to the 
advection of the flow (first order spatial derivatives), its local source (non-linear local 
function) and its diffusion (typically second order derivatives). For such type of partial 
differential equations, several numerical methods exist. Here we mention only those 
relevant to oceanographic applications, where the topographic constraints and others are 
specific and different from classical fluid dynamic systems. 

 
3. Preparation for Numerical Resolutions 
 
The numerical solution of partial differential equations may be greatly simplified if 
appropriate preliminary mathematical transformations of the initial problem are made.  
 
3.1. Coordinate Changes 
 
One of such possibilities is an a priori coordinate change, with the general objective to 
obtain a “simple” computational domain (simplified logical structures) following “as 
close as possible” the physical structures (simplified representation of the physical 
solution in the new coordinates). Due to the anisotropic nature of the oceanographic 
flow, coordinate changes are performed independently for the vertical coordinate and 
the horizontal ones. Vertically, the logical, topological characteristics of the flow are set 
by the boundaries, which are the free surface (or the ice-sheet) and the ocean floor. 
Therefore, to simplify the computational domain, terrain-following coordinates are 
designed so that their lower coordinate line follows the bottom and the upper one the sea 
surface (Figure 1). 
 

 
 

Figure 1: Terrain following vertical coordinates in a vertical plane 
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On the other hand, z-level coordinates (Figure 2) are interesting when the natural 
position of the density levels is almost horizontal. 
 

 
 

Figure 2: z-coordinate system in a vertical plane with masking of land points 
 

Isopycnal coordinates are recommended when the flow is characterized by a few water-
masses that are not mixing, so that the position of the interfaces between the water-
masses is an easy and well defined characterization of the water masses.  
 
Horizontally, model coordinates can be Cartesian, spherical or general curvilinear 
(orthogonal or non-orthogonal) (Figure 3). 
 

 
Figure 3: Cartesian grid, Stretched Cartesian grid, Orthogonal curvilinear grid, Non-

Orthogonal curvilinear grid, Unstructured grid 
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Cartesian coordinates have the advantage of lending themselves to efficient numerical 
solvers at smaller scales, as do most spherical coordinate models on global scales. 
General curvilinear coordinates have the advantage of taking into account naturally the 
topological or topographic constraints, but on the other hand demand a preprocessing to 
generate the coordinate system as well as specific numeric treatments associated with 
the coordinate change. Once a coordinate system is chosen, the discretization of the 
equations that have been transformed into this new coordinate system can be tackled. 
 
3.2. Elementary Notions for Numerical Analysis 
 
When tuning towards such numerical approximations and discretizations, some basic 
characterizations of the scheme are related to their ability to represent correctly the 
mathematical solutions they are supposed to. A numerical approximation is therefore 
characterized by its truncation error, which measures the distance between the 
mathematical expression one tries to calculate numerically and the numerical 
representation. Using Taylor developments, this truncation error is generally expressed 
in terms of the grid spacing h and derivatives of the unknown function. If the grid 
spacing h appears as a power: hn, the truncation error is said to be of nth order. For a 
given solution, decreasing the grid size by a factor 2 would decrease the truncation error 
by 2n, justifying the interest of higher order schemes. A scheme is said to be consistent 
when the truncation error decreases to zero when the grid spacing tends towards zero. A 
solution is said to be convergent when decreasing the grid spacing to zero, one recovers 
the exact solution of the equation. The notion of consistency and convergence are not 
identical, since a consistent discretization could give rise to a solution which may not 
converge. In particular, a scheme may be unstable (i.e. amplify errors during the 
numerical iterations) and thus diverge, though it is consistent. A famous equivalence 
theorem shows that for linear equation, a consistent discretization converges if and only 
if the scheme is stable. This explains the large amount of theory dealing with the 
stability analysis of numerical schemes, mostly based on the so called Von Neumann 
method. This method analyzes the behavior of Fourier modes in linearized version of 
the equations. When unstable Fourier modes are allowed by the numerical discretization, 
the scheme is termed as unstable. In practice, convergence, consistency and stability are 
not easily verified, because of the non-linear nature of the ocean dynamics and the 
boundary effects. Therefore consistency and linear stability analysis are considered 
necessary preliminary steps, but numerical results should later be checked for slower 
non-linear instabilities or destabilizing boundary conditions. We should also mention 
here that the order of truncation is not necessarily a good measure of the actual precision 
of a given numerical solution. The truncation error analysis only allows us to tell how 
fast the solution tends to the correct one when one increases the grid resolution. For 
fixed grid sizes, low order methods can provide better solutions because of a lower 
coefficient multiplying the grid spacing power. Unfortunately, there is no general 
method to decide from which resolution on, a higher order method will outperform a 
lower order method in terms of real errors.  
 
3.3. Grid and Resolution Choices 
 
Once a coordinate change has been introduced and the mathematical equations 
reformulated in the new coordinate system, one has to choose a particular numerical 
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grid within this new coordinate system. 
 
3.4. Parameterizations of Unresolved Features 
 
At that point, one has to take into account any additional need for parameterizations 
introduced by the fact that the chosen grid has finite dimensions. Indeed, any process 
whose scale is smaller than the grid size is not resolved and if non-linear processes at 
these scales interact, this needs to be taken into account in the parameterization. The 
parameterization is often introduced before introducing the numerical coordinate choice 
and the discrete grid. In this case, the modeler implicitly assumes a subsequent 
discretization with a given scale; it also means that in ocean modeling, when refining 
the grid, one generally has to change the parameterizations, explaining why 
convergence studies (increasing resolution with fixed physical parameters) are seldom 
performed. The simplest and still most widely used parameterization of processes below 
the lateral scales of the numeric grid is the formulation based on the mixing hypothesis, 
assuming that sub-grid scale processes are essentially random and have an overall 
mixing effect. Then the Laplacian diffusion parameterization is commonly 
recommended. When larger scale or repetitive processes are filtered out, this may be 
more and more questionable, since the processes contain coherent signals not leading 
necessarily to a pure mixing. Then more elaborated parameterizations are needed, for 
example those aiming at representing baroclinic instabilities or tidal stirring. Once the 
parameterization for a given scale of the numerical grid is chosen, one can tackle the 
problem of finding a numerical approximation to the solution at these scales. 
 
4. Spatial Discretizations 
 
For the spatial discretization, several methods exist, each having its advantages and 
inherent problems, which we try to summarize in the following: 
 
4.1. Finite Differences 
 
Finite differences are the mathematically most straightforward to approximate a 
differential operator. By a local Taylor development of the yet unknown solution 
φ around a grid point, one can generate expressions for any spatial operator in terms of 
the values of the unknown at the surrounding grid points (Figure 4). 
 

 
Figure 4: Nodal distribution of unknowns; h is the grid spacing and i denotes the 

discrete coordinate 
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At a given nodal point ix  , one can, for example, approximate a second derivative of the 
field φ on a uniformly spaced grid by  
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where h is the grid spacing. By using the Taylor development, one can also study the 
truncation error introduced by this finite differencing. In the present example one would 
write, with the notation ( )i i=φ φ x  
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indicating that a second order approximation (quadratic in grid spacing) is used. Once 
each operator is approximated by such finite differences, one ends up with a series of 
algebraic relationships between the values at adjacent grid points and the time derivative 
at each point. In order to close such systems, boundary conditions must then be included 
in order to obtain in certain locations the values or gradients at the adjacent grid points. 
The advantage of such finite differencing is the facility of generation of schemes with 
arbitrary orders of truncation errors and hopefully more accurate methods for higher 
order approximations. Difficulties of classical finite differences are however rapidly 
encountered in ocean models: high order approximations are generally relying on a 
large number of adjacent points (one refers to this as a scheme having a large numerical 
stencil). Near complicated boundaries, this reduces drastically the precision, since at the 
boundaries, high order schemes implicitly need the knowledge of higher order derivates 
than those provided by the mathematical boundary conditions. It means that at the 
boundaries, the order of approximation is reduced in order to fit to the physical 
requirements for correctly imposed boundary conditions. In the case of complicated 
coastlines and inclusion of islands, it means that one loses in large parts of the domain 
the advantage of higher order approximations. Another disadvantage of classical finite 
differences is the difficulty of ensuring properties of global conservation or even local 
conservation. Typically a higher order scheme can have a lower truncation error but 
lead to non-conservation of a passive tracer. This could be a major problem for 
dispersion studies of pollutants, where one certainly would like to control the 
conservation property. Finally most finite differences are limited to numerical grids 
which are regular (Figure 3). 
 
- 
- 
- 
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