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Summary 

 

This chapter focuses on the balance of the elements carbon, nitrogen and phosphorus in 

ecological interactions and processes of aquatic ecosystems. Primary producers stand at 

the base of the food web, transforming inorganic nutrients, using light energy, into 

organic biochemicals. These biochemicals are characterized by a specific elemental 

composition, differing in the relative content of carbon, nitrogen and phosphorus. As the 

biochemicals are related to specific cellular functions, shifts in primary producer C:N:P 

stoichiometry may alter its growth, and affect the phytoplankton community 

composition. Subsequently, such changes at the base of the food web may cascade 

throughout the entire aquatic ecosystem.  

 

In aquatic ecosystems, the main primary producer is phytoplankton. The elemental 

C:N:P ratio of phytoplankton typically reflects the so-called Redfield ratio of 106:16:1, 

but can also greatly vary. This variation is caused by differences in availability of 

inorganic carbon, light energy, and nutrients, which will influence resource allocation to 

biochemicals, and affect phytoplankton growth. Typically, phytoplankton 

carbon:nutrient stoichiometry increases with 1) decreasing growth rates as result of 

enhanced nutrient limitation, 2) decreasing nutrient availability relative to other non-

limiting nutrients, and 3) enhanced light and CO2 availability, in particular under 

nutrient limited conditions. Changes in phytoplankton growth and elemental 

composition may have consequences for the entire food web, as it determines the 

quantity and quality of food available for herbivorous zooplankton. In contrast to the 

elemental ratios of phytoplankton, zooplankton elemental ratios are more constraint, 

which is referred to as elemental homeostasis. This constraint is due to a fixed 
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allocation of elements to structural biochemicals, and due to the lack of efficient storage 

mechanisms. 

 

Taking the variable elemental stoichiometry of phytoplankton into account, there is 

often a mismatch in elemental composition between autotroph and heterotroph. 

Typically, phytoplankton is more carbon rich as compared to zooplankton, resulting in 

higher carbon:nutrient ratios. Zooplankton developed several mechanisms to account for 

this mismatch, including selective feeding, enhanced turnover rates, and selective 

respiration or discharge. The extent to which a zooplankton species is affected by a 

stoichiometric mismatch with the available food will further depend on its elemental 

composition, its growth rate, and its size. The stoichiometric mismatch between 

phytoplankton and zooplankton may subsequently cascade to higher trophic levels.  

 

Eutrophication and climate change will alter the availability of nutrients, carbon and 

light in aquatic ecosystems. These anthropogenic-driven changes in resource availability 

will likely affect phytoplankton C:N:P stoichiometry. This will have implications for 

consumer growth and reproduction, and thus may alter the structure and functioning of 

entire aquatic food webs.  

 

All in all, the field of ecological stoichiometry provides a very useful framework to 

couple inorganic elements with ecosystem structure and functioning. 

 

1. Introduction  

 

All organisms are built from the same basic set of elements. Apart from hydrogen (H) 

and oxygen (O), predominant elements in life are carbon (C) and nitrogen (N). These 

four elements constitute up to 99% of living biomass. Many other elements are also 

important in cellular processes, such as for example magnesium in photosynthesis, or 

iron in oxygen transport through the body. Of these „lesser‟ elements, phosphorus (P) 

plays the most prominent role as it is essential for both the storage and transfer of 

genetic information, and the energy metabolism within cells.  

 

Primary producers link the non-living world with the living world by converting 

inorganic carbon and nutrients into organic compounds, mostly with the help of light as 

energy source. Where macrophytes and macro-algae may dominate in more shallow 

systems, microalgae (phytoplankton) are the key primary producers in most pelagic 

aquatic systems. They are the main prey of herbivorous grazers such as ciliates, rotifers 

and crustaceans (zooplankton). These primary consumers are in turn consumed by 

secondary consumers, for instance by fish (Stibor and Sommer 2004). Growth and 

reproduction of consumers obviously greatly depends on the quantity of their food, 

typically determined by the availability of carbon (i.e. energy). However, also the 

quality of the food is of importance, especially when the quantity of the food is so high 

that energy requirements of maintenance processes are met. In the stoichiometric 

context of this chapter food quality will be mainly determined by the relative 

availability of carbon and nutrients.   

 

The balance of carbon and nutrients in phytoplankton depends on the availability of 

light and resources in the environment, which in turn affects the production of organic 



OCEANOGRAPHY - Ecological Stoichiometry in Aquatic Ecosystems - Dedmer B. Van de Waal, Maarten Boersma 

©Encyclopaedia of Life Support Systems (EOLSS) 

compounds. Zooplankton consumes phytoplankton, and thereby obtains energy and 

nutrients that were accumulated by the algae. The ratios between the elements available 

in phytoplankton do not always match the requirements of the consumers. The field of 

ecological stoichiometry studies the balance between these elements among organisms 

and their interactions with the environment. As such, the field of ecological 

stoichiometry incorporates „first principles‟ like mass balance, and can be applied to a 

variety of processes from the cellular to ecosystem level. 

 

For this chapter, we focus on aquatic ecosystems only, even though ecological 

stoichiometry obviously applies to all interactions between producers and consumers. 

Furthermore, we will focus on the elements carbon, nitrogen and phosphorus. These 

elements, apart from oxygen and hydrogen (mainly present in water), typically show the 

highest relative abundance in living organisms compared to the non-living world. As 

such, these elements have the highest potential to be limiting biological production. For 

detailed information on the complete field of ecological stoichiometry we refer to the 

seminal book of Robert W. Sterner and James J. Elser (2002). 

 

2. Linking Biological Functions to Elemental Stoichiometry 

 

Primary producers typically take up inorganic carbon and nutrients from their 

environment by using light energy (photosynthesis), and transfer inorganic elements 

with the obtained energy into organic biochemicals (Fig. 1). Hence, these biochemicals 

are the first step in coupling elemental composition of the non-living world with the 

stoichiometry of life. As the various biochemicals consist of different elements in 

different ratios, they depend differently on the elements that are acquired. Moreover, 

also the machinery necessary to synthesize these substances has different elemental 

requirements. The synthesized biochemicals are then used to build cellular compounds, 

with specific cellular functions. Can these cellular functions be coupled with a specific 

C:N:P stoichiometry? To answer that question, the acquisition and assimilation of 

carbon, nitrogen and phosphorus from inorganic elements towards structural compounds 

will be discussed in this paragraph. 

 

2.1. Conventions about Element Ratios  

 

In literature associated with ecological stoichiometry the relative content of an element 

in an organism is expressed in different sorts of units (e.g. as percentage of dry weight, 

or as atomic ratios). Here we aim to structure these units in line with Sterner and Elser 

(2002). Where we discuss elemental content, amounts are expressed as mass of an 

element relative to the raw dry-mass (i.e. including inorganic and organic compounds) 

of the whole organism (e.g. %C by mass). Preferentially, however, units are converted 

to atomic ratios of elements (e.g. C:N), as chemical reactions are also described by 

atom-to-atom interactions, and when we think in building blocks of different organic 

compounds, ratios are the measure of choice. Elemental ratios are useful in describing 

the relative contribution of one element to another. Ratios however, do not give 

information about the absolute amount of respective elements. For instance, a high C:P 

ratio may indicate a relatively high amount of carbon, relative to the  phosphorus 

content, but gives no information on the absolute amount of both carbon and 

phosphorus in the organism, which may be low or high.  
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2.2. Nutrient Acquisition 

 

Phytoplankton obtains its carbon from dissolved CO2 and bicarbonate (HCO3
-
) during 

photosynthesis. Therefore, the availability of both inorganic carbon and light plays an 

important role in carbon acquisition of phytoplankton. The inorganic carbon is 

converted into carbohydrates, which can be used for synthesis of polysaccharides, 

amino acids and nucleotides, or converted into fatty acids and lipids (Fig. 1). Nitrogen is 

taken up as nitrate (NO3
-
), nitrite (NO2

-
) or ammonium (NH4

+
). Several cyanobacteria 

species can fix nitrogen from N2, and other species can take up nitrogen in the organic 

form, for instance as urea. Once taken up, inorganic nitrogen is incorporated into a 

carbon-backbone and assimilated to amino acids (Fig. 1). Phosphorus is usually taken 

up as ortho-phosphate, which includes phosphate (PO4
3-

), hydrogen phosphate (HPO4
2-

), 

and dihydrogen phosphate (H2PO4
-
), but a few examples also exist of uptake of organic 

phosphorus compounds. Cellular inorganic phosphorus (Pi), together with amino acid 

derived nucleobases, is incorporated into a carbon-backbone forming nucleotides (Fig. 

1).  

 

 
 

Figure 1. Schematic diagram of carbon, nitrogen and phosphorus uptake and 

assimilation in phytoplankton. Ci, Ni and Pi refer to cellular inorganic carbon, inorganic 

nitrogen, and inorganic phosphorus, respectively. 

 

2.3. From Inorganic Nutrients to Organic Compounds 

 

Inorganic elements taken up by primary producers are assimilated into biochemicals and 

cellular structural compounds. The key biochemicals are carbohydrates, lipids 

(consisting of fatty acids), proteins (consisting of amino acids), and nucleic acids 

(consisting of nucleotides). The different biochemicals comprise varying elemental 

ratios. Hence, changes in the relative composition of these biochemicals will affect the 

C:N:P stoichiometry of organisms. As the biochemicals fulfil different cellular 

functions, the C:N:P stoichiometry of the cell as a whole may be coupled to these 

functions.  
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2.3.1. Carbohydrates 

 

Glucose is the most commonly known carbohydrate and it plays a central role in the 

energy metabolism of organisms. Carbohydrates also serve as important carbon and 

energy storage compounds, for instance as polysaccharides such as starch and glycogen.  

In addition, polysaccharides are also part of the structural biomass, for instance as 

cellulose in plants, as peptidoglycan in bacterial cell membranes, and as chitin in fungi 

and invertebrates.  

 

Cellulose is a chain of glucose and consists of water and carbon, i.e. it does not contain 

nitrogen or phosphorus (Table 1). Peptidoglycan and chitin also contain nitrogen, 

resulting in a structural atomic C:N ratio of 2.6 and 5.9 respectively (Sterner and Elser 

2002). Thus, increases in relative glucose content of cells will enhance the C:N ratio of 

the cell. Increases in peptidoglycan and chitin content will increase the cellular carbon 

content, but the nitrogen content as well, thereby enhancing the cellular N:P ratio. 

 

2.3.2. Lipids 

 

Lipids are biomolecules used amongst others for storage of energy and as structural 

compounds in cell membranes, but also as potential signaling compounds (e.g. sterols). 

Typical lipids used for energy storage are the tricylglycerols, which consist of three 

fatty acids linked to a glycerol molecule. These tricylglycerols have a high carbon 

content, and are well suited for carbon (energy) storage (Table 1). Fatty acids and 

glycerols do not contain nitrogen and phosphorus. Hence, tricylglycerols are carbon rich 

biochemicals, devoid of nitrogen and phosphorus. Another important group of lipids, 

prominently involved in cellular membranes, are phosphoglycerides. This group of 

lipids contains a phosphoester or phosphonate linkage between the fatty acids and a 

variable terminal functional group.   

 

As the functional groups often contain some nitrogen, phosphoglycerides contain 

carbon, nitrogen and phosphorus. Nitrogen however is only present in minor amounts 

(Table 1). Hence the compounds contain a relatively high amount of phosphorus. Thus, 

increases in the relative cellular tricylglycerol content will enhance the cellular 

carbon:nutrient ratio, while an increase in the relative phosphoglyceride content will 

enhance the overall carbon content, but reduce the N:P ratio. 

 

2.3.3 Proteins 

 

Proteins are involved in many cellular processes and in particular in the form of 

enzymes. As a result, proteins play a key role in the cellular metabolism. In addition, 

proteins are important structural compounds, and are involved in cell signaling. Proteins 

are comprised of one or more polypeptides, which are typically built from chains of 

different combinations of 20 proteinogenic amino acids. These amino acids are nitrogen 

based biochemicals, with nitrogen contents varying between 8% in tyrosine to 32% in 

arginine (by mass; see also Table 1).  

 

Assuming a protein is comprised from an equal proportion of the 20 amino acids, the 

average carbon content will be 47% (by mass), the nitrogen content will be 15% (by 
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mass), and the overall atomic C:N ratio will be 3.6 (see also Table 1). This may deviate 

if proteins contain more N-rich or N-poor amino acids. Yet, the average nitrogen 

content of 15% (by mass) seems representative for proteins (Sterner and Elser 2002). 

Hence, increases in the relative protein content may greatly reduce the C:N ratio, but 

particularly may increase the N:P ratio. 

 

2.3.4 Nucleic Acids 

 

Nucleic acids contain the genetic information of all organisms. DNA and RNA are used 

to encode, transmit and express genetic information. DNA and RNA are constructed 

from nucleotides that consist of a phosphate group, a nucleobase and a pentose sugar. 

The nucleobases that can be incorporated are the purines adenine and guanine, and the 

pyrimidines cytosine, uracil and thymine. The purines and pyrimidines differ in their 

elemental composition, but as their contribution to nucleic acids is typically equal 

(Lehninger et al. 1993), an average has been assumed to estimate their carbon, nitrogen 

and phosphorus content.  

 

Following this assumption, the nucleic acids comprise an average nitrogen content of 

14-15% and an average phosphorus content of 8-9% (by mass; see also Table 1). The 

nitrogen content is relatively high and comparable to proteins. As the nucleic acids also 

contain a relative high amount of phosphorus, their N:P ratio is relatively low. Thus an 

increase in the relative cellular content of nucleic acids will likely cause minor changes 

in the cellular C:N ratios, but will decrease the cellular N:P ratio. 

 

  %C %N %P 
C:

N 
N:P 

  (mass) (atomic) 

Carbohydrates 37 0 0 - - 

Fatty acids 

Butyric acid (C4:0) 55 0 0 - - 

Lignoceric acid 

(C24:0) 
78 0 0 - - 

Amino 

acids 

Tyrosine 60 8 0 8.7 - 

Arginine 41 32 0 1.5 - 

Nucleotide

s 

DNA
a 

33 15 8.7 2.6 4.0 

RNA
a 

30 14 8.4 2.4 3.8 

Lipids  
Triacylglycerols

b 
75 0 0 - - 

Phospholipids
c 

65 1.6 4.2 48 0.9 

Proteins Average
d 

47 15 0 3.6 - 

 

Table 1. Relative contribution (by mass) of carbon, nitrogen and phosphorus, and the 

atomic C:N and C:P stoichiometry, of several key biochemicals. 
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2.3.5. Biominerals 

 

Some organisms contain large amounts of biominerals such as calcium carbonates, 

silica and hypoxyapatite. Calcium carbonates (CaCO3) can be found in exoskeletons of 

crustaceans, but are much more visible in for instance mollusk shells, foramineferal 

tests and coccolithophorid cell walls. The latter two groups play a key role in the 

biogeochemical cycling of calcium and carbon. Silica (or opal; amorphous hydrated 

silica SiO2 . nH2O) is a major constituent of diatom frustules, giving diatoms a unique 

molar Si:C ratio of ~1 (Sommer 1986). Hence, diatoms play a key role in the 

biogeochemical silicon cycle. Hydroxyapatite (Ca10(PO4)6(OH)2) is the key component 

of bones and bony materials (e.g. teeth and antlers) of vertebrates. Bones play an 

important role in determining the elemental stoichiometry of vertebrates. In particular 

due to the high phosphorus content, bone content may greatly affect organism C:P ratios 

(see also 4.3). 

 

2.4. Turning Things Around  

 

From the above it has become clear that the elemental composition of an organism is 

intricately linked to its biochemical composition. This, we can also turn around. 

Organisms with high C:N and C:P ratios will have a relative high amount of carbon-

based biochemicals such as carbohydrates and lipids, whereas they will have relatively 

low amounts of nitrogen- and phosphorus-based biochemicals such as proteins and 

nucleic acids, respectively. Thus, the elemental composition of an organism may 

indicate its relative biochemical composition, which in turn can be associated to specific 

cellular functions. 

- 

- 

- 
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