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Summary 

Geostatistical analyses were first developed in the 1950's as a result of interest in areal 
or block averages for ore reserves in the mining industry.  Today, variogram estimation 
and spatial prediction (kriging) span all sciences where data exhibit spatial correlation.  
Theoretical properties of the spatial process are addressed under the distribution-free 
and likelihood-based perspectives.  Strengths and weaknesses of these two dominant 
methodologies for modeling spatial correlation and predicting responses at unsampled 
sites and areal units are explored.  Examples of hot spot detection and areal prediction 
show the flexibility of the Bayesian paradigm.  Current bottlenecks and future directions 
in the field of geostatistics are discussed. 

1. Introduction 

The science of geostatistics has grown tremendously from its mining roots 
approximately 50 years ago to encompass a wide range of disciplines.  Olea (1991, p. 
31) defines geostatistics as “the application of statistical methods … for use in the earth 
sciences, particularly in geology”.  Geostatistical analyses are employed in fields where 
the data are viewed as (essentially) point observations and prediction (at unsampled 
sites or at areal units) is desired.  Today, geostatistical studies are conducted with 
hydrological data (Rouhani and Myers, 1990; Kitanidis, 1996), in mining applications 
(Kelker and Langenburg, 1997; Schuenemeyer and Power, 2000), air quality studies 
(Guttorp, Meiring and Sampson, 1994; Krajewski, Molinska and Molinska, 1996), soil 
science data (Webster and Oliver, 1992; Raspa and Bruno, 1993), biological 
applications (Ecker and Gelfand, 1999; Ritvo, Sherman, Lawrence and Samocha, 2000), 
economic housing data (Basu and Thibodeau, 1998; Gelfand, Ecker, Knight and 
Sirmans, 2003), and constructing environmental monitoring networks (Wikle and 
Royle, 1999). 
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One purpose of this chapter is to acknowledge the fundamental contributions of two 
pioneers in geostatistics, D. G. Krige and G. Matheron, who formulated the 
underpinnings of geostatistics and kriging approximately 40 years ago.  This chapter 
will not focus much on the history of geostatistics; other authors, in particular, Cressie 
(1990), have already retraced its history quite well.  Rather, this author presents his 
perspective on the current status of the science of geostatistics.  What are the strengths 
and weaknesses of the dominant methodologies used in undertaking such an analysis?  
What are the bottlenecks that current researchers are encountering?  What is the future 
for the field of geostatistics? 
 
Mining variables such as deposits of ore are often highly concentrated in veins.  When 
these data are collected at locations or sites at a fixed time, a purely spatial analysis 
revolves around the tendency for pairs of sites closer in space (distance and possibly 
orientation) to have more similar responses than that for pairs further apart, i.e., the data 
exhibit spatial correlation.   Predicting block ore grades (prediction of an areal block 
average) from a sample taken at point support was of primary interest to D. G. Krige in 
the 1950’s.  Krige predicted areal gold concentrations in South Africa based on large 
amounts of data which exhibited strong positive correlation (Cressie, 1990, p. 246).  In 
honor of D. G. Krige's contribution, G. Matheron coined the term kriging to refer to 
(optimal) prediction of responses at unsampled locations.  Matheron (1963) is first to 
publish a detailed exposition on geostatistics and kriging.  He recognized that prediction 
is only one component of the analysis and should not be viewed as the only goal of a 
geostatistical analysis.  As with any statistical analysis, the quality of the geostatistical 
prediction depends upon how well the postulated model explains the observed data. 
 
In this spirit, two fundamental goals exist in the analysis of clustering or spatially 
correlated data.  First, accurately explain the clustering mechanism, i.e., develop a 
model for the correlation structure.  Second, use this proposed model to predict 
responses at unsampled locations or at areal units.  Standard statistical techniques (such 
as ordinary least squares regression) fail to incorporate the clustering effect that spatial 
data tend to exhibit.  In fact, many statistical analyses ignore the geographic coordinates 
altogether in treating the data as an independent and identically distributed sample 
rather than one (spatially correlated) vector of observations. 
 
At the explanation stage, one needs to accurately model the spatial correlation structure.  
The primary method of extracting this spatial clustering is through the variogram.  The 
variogram is at the heart of geostatistics.  It expresses the variability of pairs of spatially 
indexed observations as a function of their separation vector.  For a particular spatial 
region D n⊆ , where n is the dimension of the s  vector which consists of the 
geographic coordinates for a particular location.  In most practical cases, it is either two 
or three dimensional; however, in the present chapter it is denoted as an n ×  1 vector, 
one needs to address two basic questions: does the spatial process underlying the 
observed data in the region exhibit spatial correlation and if so, is this correlation 
equally strong (at a fixed distance) in every direction?  If the answer is yes to both 
questions, then the spatial process is isotropic.  There is an enormous body of literature 
whose focus is variogram modeling for isotropic spatial processes.  Cressie (1993), 
Wackernagel (1998) and Stein (1999) are excellent current references.  Under isotropy, 
the variogram or the spatial correlation is only a function of the Euclidean distance 
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between sites.  In addition, techniques for studying the most common departure from 
isotropy shall be discussed. 
 
At the prediction stage, the standard technique of kriging incorporates the association 
structure (the variogram) to optimally solve a system of linear equations which predict 
the value at an unsampled location.  Kriging produces the best linear unbiased predictor 
(BLUP) for the unsampled site.  It maintains two distinct advantages over other 
interpolation techniques such as inverse distance weighting.  First, standard 
interpolation techniques do not include any information about the spatial correlation 
structure.  Secondly, kriging allows a prediction variability estimate to assess, under 
certain conditions, its prediction accuracy.  Methodologies for predicting responses at 
unsampled sites and areal units shall be explored. 
 
The primary modeling decision for geostatistical analyses involves choosing either the 
parametric family of distributions from which the responses arise or to take a 
distribution-free approach.  While not choosing a sampling distribution for the observed 
data has certain advantages, it does induce limitations in the resulting statistical 
inference.  Under the parametric or likelihood-based approach, a Gaussian random field 
is traditionally assumed, partly for convenience and partly for the flexibility that this 
family offers; however, many environmental responses are binary or positive with right-
skewed distributions (such as water pollution concentrations).  In the latter case, 
lognormality is often assumed as a default option, but other transformations to 
normality can be employed. 
 
This chapter is organized as follows.  Section 1 is the introduction.  Section 2 outlines 
the distribution-free geostatistical methodology and examines its strengths and 
weaknesses while section 3 does the same for the parametric or likelihood-based 
techniques.  Section 4 explores model based prediction of unsampled locations and of 
areal blocks.  Finally, Section 5 outlines some future directions in the field of 
geostatistics. 

2. Distribution-Free Methodology 

The observed data, ( ),iY s  1,...,i N= , are collected at N locations or sites 

s n
i D∈ ⊆ .  Theoretical assumptions such as ergodicity, stationarity, isotropy, 

continuity and differentiability of the random field, the population (sampling) 
distribution, and prior distributions for various components are customarily developed 
for features of the underlying spatial process, ( ).Y s  These assumptions are needed to 
validate statistical inference, however, they tend to be difficult to verify given only the 
observed data.    
 
The first assumption is that of ergodicity, which allows inference to proceed using only 
one (vector) replicate.  By making this ergodicity assumption (Zhan, 1999), one uses 
spatial averages (those formed by averaging responses over sites in the region, D) in lieu 
of probabilistic or ensemble averages (those formed by averaging over multiple (vector) 
realizations of the spatial process).  Unfortunately, the observed data cannot be used to 
check the validity of the ergodicity assumption (see Myers, 1989, pp. 351-352). 
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Much of the focus of geostatistics centers on developing models for the correlation 
structure of the observed data.  The concepts of stationarity (both intrinsic and second-
order stationarity) and isotropy provide theoretical underpinnings for modeling the 
local source of variability. Intrinsic stationarity assumes that for arbitrary locations s  
and *s  in D , 
 

*

* *

E( ( ) ( ))    0

Var( ( ) ( ))    2 ( )

Y Y

Y Y γ

− =

− = −

s s

s s s s
           (1) 

 
where *2 ( )γ −s s is the variogram and *( )γ −s s is the semivariogram.  Stationarity 
assumes that the mean and variance of the spatial process, ( ),Y s  do not depend on the 

exact locations s  and *s ; the mean is assumed constant and the variability only depends 
on the separation vector, *−s s  (i.e., the spatial process, (s),Y  is translation invariant).  
If the spatial variability for a fixed distance in all directions is the same (i.e., the spatial 
process has rotational invariance), then the spatial process is isotropic and 

*2 ( )γ − =s s  *2 ( )    2 ( )dγ γ− =s s  where d  is the Euclidean distance between 

sites s  and *s .  A stronger form of stationarity (second-order or weak) assumes that 
(Matheron, 1963), 
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where, under isotropy, *( ) ( )C C d− = < ∞s s .  Smith (1996) defines a process to be 
homogeneous if it satisfies both isotropy and second-order stationarity. 
 
Cressie (1988) demonstrates that the class of intrinsically stationary spatial processes 
strictly contains those of second order, i.e., C determines the variogram 2γ .  However, 

2γ  does not determine C, since stationary increments for *( ) ( )Y Y−s s  do not imply 
that ( )Y s  is stationary.  In such case, C(0) need not exist, hence the variogram is 
theoretically unbounded.  Under homogeneity, the relationship between the variogram 
and the correlation structure is given by 2 ( )     2( (0) ( ))d C C dγ = − . 
 
In practice, the assumption of stationarity is difficult to verify since it is put on the 
stochastic process, not on any realizations of process, i.e., the data.  For example, the 
sample or data based (empirical) variogram is always bounded in practice, since it is a 
function of real data; however, if these data are realizations of a Brownian motion (see 
Cressie, 1993, p. 68), then the underlying theoretical variogram is linear, which is 
unbounded.  Furthermore, one might potentially want to model the spatial locations in 
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the mean and covariance structures of (2), however, identifying which component (or 
both) exhibits nonstationarity is not easily determined.  “One person's deterministic 
mean structure is another person's correlated error structure" (Cressie, 1993 p. 114). 
 
A convenient parameterization of the correlation structure in (2) is ( )C d =  

2 2 ( , )dτ σ ρ+ φ  where ρ  is a valid correlation function and 2τ , 2σ  and φ  are 
model parameters.  Note that φ  is a vector of model parameters that control the strength 
of spatial correlation and/or the smoothness of the resulting prediction of the spatial 
process (continuity and differentiability of the random field).  The class of all valid 
correlation functions in n  may be expressed through Bochner’s Theorem (see 
Cressie, 1993, p. 84).  Ecker and Gelfand (1997, p. 351) provide several one parameter 
correlation functional forms, ( , )dρ φ , commonly found in geostatistical analyses.  
Figure 1 displays their corresponding semivariograms.  The exponential, Gaussian, 
rational quadratic (Cauchy) and spherical are monotonic correlation functions while the 
Bessel is a dampened sinusoidal correlation structure.   
 

 
 

Figure 1 : Five commonly used semivariograms in geostatistical analyses. 
 
Common two parameter monotonic correlation structures include the Matern and 
general exponential.  The Matern correlation function (Matern, 1986) is defined for 

( , )v ϕ ′=φ  as 
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1
1( , ) ( ) ( )

2 ( )
v

vvd d K d
v

ρ ϕ ϕ−=
Γ

φ            (4) 

 
where 0v ≥ , 0ϕ > , ( )Γ ⋅ is the standard gamma function and ( )vK ⋅  is a modified 
Bessel function of the third kind of order v  (Abramowitz and Stegun, 1965).   The 
shape of the postulated variogram near the origin controls the differentiability of the 
random field, which dictates the smoothness of the resulting spatial prediction. For the 
Matern model, the parameter v  controls the smoothness of the associated random field; 

0v ≥  ensures continuous realizations and realizations are ( 1)v◊ −  times (mean 
square) differentiable where ◊  is the integer ceiling function (Handcock and Stein, 
1993, p. 406).   Special cases of the Matern correlation function include the exponential 
( 1

2v = ) and the Gaussian (v →∞ ).  Fortran code that evaluates the Matern correlation 

function (for use with, for example, Compaq Visual Fortran Professional version 6.5 - 
including IMSL) is included in the appendix.  The general exponential correlation 
function is defined for ( , )α ϕ ′=φ  
 

( , ) exp( )d dαρ ϕ= −φ            (5) 
 
where 0 2α< ≤  and 0ϕ > .  Special cases of the general exponential correlation 
structure include the exponential ( 1α = ) and the Gaussian ( 2α = ).  Though (5) may 
be computationally easier to work with than (4), less appealing sample function 
behavior results.  For 2α < , continuous, but nondifferentiable realizations are obtained 
and when 2α = , analytic realizations are observed.  So, excluding 2α = , the general 
exponential correlation structure places no mass on differentiable realizations, which 
induces fairly rough prediction over the region. 
 
Adopting the Matern correlation structure in preference to the general exponential 
because of increased differentiability is a mechanistic decision.  While Stein (1987) 
shows that the shape of the variogram near the origin (the derivative of the variogram 
approaching the origin) can be consistently estimated, the strong correlation between v  
and ϕ  for the Matern model would require an enormous amount of data near the 
variogram origin, i.e., at close spatial resolution, to discern the true underlying 
smoothness of the spatial process.  As an illustration, Figure 2 provides a fairly smooth, 
twice differentiable Matern model ( 2.5v = ) which is nearly indiscernible, in particular 
near the variogram origin, from a non-differentiable general exponential model. 
 
Under homogeneity, the theoretical variogram is bounded and the sill of the variogram 
is 2 2lim 2 ( ) 2( )d dγ τ σ→∞ = +  which represents the theoretical variance of the 
spatial process.  Some monotonically increasing variogram forms, such as the spherical, 
achieve their sill exactly i.e. for finite d, while others (exponential, Gaussian and 
Cauchy or rational quadratic) reach their sills asymptotically.  For monotonic 
variograms that reach their sill exactly, the range is defined to be the distance at which 
the variogram reaches its sill or equivalently the distance at which ( , )dρ φ becomes 
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zero.  Hence, responses at sites separated by distances greater than the range are 
spatially uncorrelated.  For asymptotically silled variograms, two points will only be 
spatially uncorrelated in the limit as d →∞ .  In such case, one identifies the effective 
range, a concept that is not uniquely defined.   Two possible definitions are noted; one 
facilitates interpretation in the variogram space of the process and the other in the 
correlation space.  The first (McBratney and Webster, 1986, p. 623) defines the 
effective range, Cr , as the distance where the variogram reaches 2 22( 0.95 )τ σ+ .  
Thus, the effective range Cr  is achieved when the spatial correlation of the process 
diminishes to 5%.  Mathematically, Cr  solves ( , ) 0.05Cd rρ = =φ .  A second 
definition (Cressie, 1993, pp. 67-68) of the effective range, Vr , is the distance at which 

the variogram reaches 95% of its sill.  Then, Vr  solves 
2 2

2( , ) 0.05Vd r τ σρ
σ

⎛ ⎞+
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
φ .  

Note that Vr  would not exist if 
2 2

2 20τ σ
σ

⎛ ⎞+
>⎜ ⎟⎜ ⎟

⎝ ⎠
, but this would be unlikely in practice.  

For the one parameter, asymptotically silled variograms given in Figure 1, the 
relationship between the scalar correlation parameter φ  and the effective ranges Cr  and 

Vr  are presented in Table 1.  It is obvious that V Cr r≤  with equality if 2 0τ = .  Many 
authors adopt Cr  and parameterize φ  to be the effective range Cr .  Henceforth, the 
term range shall refer to either the effective range or the exact range.  For the dampened 
sinusoidal Bessel variogram and other non monotonic variograms, the range is not 
defined.  The nugget of the variogram is 2lim 0  2 ( ) 2d dγ τ→ =  which need not be 
zero due to measurement error and/or a microscale effect resulting from extrapolation of 
the variogram from the minimum sampled distance, min   d , to the origin. 

 

 
 

Figure 2: Illustrative comparison of Matern and general exponential variograms. 
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Correlation  
Structure 

( , )dρ φ  Cr  Vr  

Exponential exp( )dφ−  3
φ  ( )2 2

23 log τ σ
σ

φ

+−
 

Gaussian 2exp( )dφ− 3
φ  ( )2 2

23 log τ σ
σ

φ

+−

 
Cauchy 

2
1

1 dφ+
 19

φ  2 2

2 2
19
( )
σ τ

φ τ σ
−
+

 

 
Table 1: Range definitions for monotone asymptotic correlation functions 

 
Fitting semivariogram models under the distribution-free methodology can be viewed as 

a curve fitting exercise.  For each of the ( 1)
2

N N −  pairs of observed locations si  and s j  

in D, a collective plot of each Euclidean distance, ijd , versus ( )21
2 (s ) (s )i jY Y− , a 

point estimate of the variability for the pair, is the semivariogram cloud.  The Matheron 
(1963) estimator of the semivariogram, 
 

( )

*

21
2

( , ):

( )

(s ) (s )
Bk

ij k

k ij

i jN
i j d B

d

Y Y

γ

∈

=

−∑
           (3) 

 
smoothes the semivariogram cloud by aggregating distances into K sets 1 2, ,..., KB B B  
where 1:k ij k ij kB d b d b−= ≤ <  for constants 1kb −  and ,   1,...,kb k K=  with 

0 0b = . The constants kb  are typically chosen to be k η⋅  where η  is the lag or width 

of each distance bin kB . A plot of *
kγ  versus the midpoint of the interval 1( , )k kb b−  or 

the average distance of all ij kd B∈  for 1,...,k K=  is called the Matheron empirical 
semivariogram.  Figure 1 displays the five aforementioned correlation functions 
overlaid on the Matheron empirical semivariogram for a dataset of scallop catches.  
Other variogram estimators exist (see Genton, 1998, pp. 328-330; Ecker and Gelfand, 
1997, p. 361), however, use of the Matheron estimator is ubiquitous. 
 
Since a correlation matrix must be positive definite (the associated variogram must be 
conditionally non-negative definite), only certain functions are allowable to model 
variograms.  Hence, a valid theoretical variogram model (such as those from Figure 1) 
is typically fitted to the Matheron semivariogram by techniques (Cressie, 1993, section 
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2.6) such as least squares, generalized least squares or fitting by inspection.  The 
standard variogram fitting algorithm of Cressie (1985) uses a weighted least squares 
procedure.  However, it fails to account for the correlation of the empirical variogram 
values at two distinct lags, since the same (s )iY  would typically appear multiple times 
both within the same variogram lag and across several different lags.  Genton (1998) has 
proposed an algorithm that closely approximates the correlation structure of the 
variogram at two distinct lags.  In addition, by using the variogram cloud, Müller (1999) 
employs the exact variogram correlation structure to develop an iterative fitting 
algorithm. 
 
The distribution-free approach to variogram fitting is widely used.  Its principal 
advantage over parametric or likelihood-based methods, including a fully Bayesian 
approach, is that for variogram parameter estimation and subsequent spatial prediction, 
one only needs intrinsic stationarity, not some distributional assumption for (s)Y .  Not 
assuming a distribution for (s)Y  is appealing; however, it does introduce some 
limitations.  First, parameter estimation is not invariant to the lag choice η  or 
equivalently to the choice of sets kB  (see Curriero and Lele, 1999).  Thus, it is possible 
to arrive at quite different parameter estimates for the same model using different lag 
values. To mitigate the lag invariance criticism, Webster and Oliver (1992) suggest 
gathering over 150 samples.  For an isotropic spatial process, McBratney and Webster 
(1986, p. 630) claim that if the lag is small then the smoothing or regularization of the 
variogram “is small enough to be ignored”. Many ad hoc rules exist in the distribution-
free methodology (see Lamorey and Jacobson, 1995, pp. 331-332).  For example, 
Journel and Huijbregts (1978) suggest only using sets kB  where 

kBN  is greater than 

30 and discarding sets kB  where 
max  ( )

2
ijd

kb >  because the variogram tends to be 

erratic for higher lags. 
 
 
 
- 
- 
- 
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