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1. The Concept of Stochastic Modeling 
 
Beyond an initial view that the term "stochastic modeling" (SM) is associated with the 
study of uncertainty in natural sciences, perceptions at a more substantial level 
regarding SM 's functions and uses are not as uniform as one might think.  This should 
not come as a surprise, in view of the multidisciplinary nature of science.  Depending on 
the application considered, one may refer to stochastic models as hydrologic, geologic, 
atmospheric, genetic, ecological, epidemic, etc.  A common factor in all these cases is 
that, SM is concerned with the mathematically rigorous and scientifically meaningful 
representation, explanation, and prediction of natural systems in uncertain 
environments (such uncertainties may be due to measurement errors, heterogeneous 
data bases, erratic fluctuations in the space/time variation of the underlying processes, 
insufficient knowledge, etc.).  Within such a framework, the main goal of SM has been 
to provide a realistic system with spatiotemporal continuity and internal physical 
consistency.  To achieve such a goal, SM  relies on the powerful blending of two 
components (Christakos et al., 2005): 
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 (i) a formal component focusing on mathematical structure, logical process, and 
theoretical representations,  with  

 (ii) an interpretive component concerned with applying the formal part in real-world 
situations, including the physical meaning of mathematical structure, specific 
observation methods and connections to other empirical phenomena. 

 
Formal SM  deals with a large variety of mathematical topics, including random fields, 
probability theory, stochastic differential and integrodifferential equations, random 
fractals and wavelets, space/time geometries, rules of logical reasoning, analytical and 
numerical means of calculation, estimation techniques, and multi-objective optimization 
theories, among others.  The challenge of applying sophisticated SM techniques in 
environmental science is often not in the formal component itself, but in the 
appropriateness of the application and the validity of the interpretive component which 
goes beyond mathematics into the realms of common sense, physical knowledge and 
empirical observation.  Interpretation issues are relevant when one needs to establish 
relationships (also called, correspondence or operational or duality rules) between the 
natural systems and the formal mathematics which describe them, to measure and test 
the formal structure, or to justify certain methodological steps (see, also, Section 4, 
below).   
 
A fruitful interaction of formal and interpretive investigations lies at the heart of SM 's 
numerous successes in the physical sciences.  The SM approach differs significantly 
from the classical statistics paradigm in this respect:  the former is founded on natural 
laws and phenomenological representations, whereas the latter mainly uses formal 
techniques of pattern fitting (trend projection, regression analysis, sampling theory, 
etc.).  This remarkable feature of SM enhances its scientific content and makes it a 
central force in the study of such diverse phenomena as flow and contaminant transport 
in porous formations, turbulence, ionospheric scattering, quantization analysis, and 
electromagnetic wave propagation through the atmosphere.  In fact, most natural 
phenomena governed by field equations include situations that need to be treated from a 
SM viewpoint.  In situations involving uncertain elements and random fluctuations, SM 
formally casts the governing physical equations into a stochastic form that may involve 
random field realizations, probability distributions, or space/time moments.  As a result 
of their physical basis, these stochastic equations provide the means for sound scientific 
inferences, as opposed to merely statistical inferences (in terms of minimum variance, 
bias, efficiency, estimation and confidence tests, etc.; Bury, 1975).  Celebrated early 
SM approaches based on physical laws include Maxwell's and Boltzmann's 
development of the kinetic theory of gases (in 1860 and 1896), Planck's derivation of 
the radiation law (in 1900), Gibbs' formulation of statistical mechanics (in 1901), 
Einstein's and Langevin's analyses of Brownian motion (in 1905 and 1908), Taylor's 
and von Karman's theories of turbulent motion (in 1921 and 1937), and Heisenberg's 
and Born's approaches to modern quantum mechanics (in 1925 and 1926).  Interesting 
reviews of these historic SM works may be found in Beran (1968), Gardiner (1990), and 
Sklar (1993).   
 
The essential connection between the formal and the interpretive components of SM 
described above has been astonishingly productive, in both ways:  (a) formal techniques 
have generated the means for understanding natural phenomena beyond sense 
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perceptions; and (b) interpretive investigations have produced new and more powerful 
formal techniques.   
 
2. SM Metaphors and Reality Levels 
 
It was Heidegger who said, "we cannot describe the real world without recourse to 
metaphors".  Indeed, metaphors are essential ingredients for scientific exploration, and 
they have been used to extend scientific theories into new domains.  Generally, the 
purpose of a metaphor is to probe and conceptualize unknown or little understood 
domains by means of more familiar quantities.  Like most tools of scientific inquiry, SM 
makes use of metaphors by which it conceptualizes important environmental entities, 
such as space/time distribution, natural heterogeneity, biological variation, and 
uncertainty.  The spatiotemporal continuum metaphor conceptualizes space/time as a set 
of points associated with a continuous spatial arrangement of events combined with 
their temporal order.  SM associates a physical geometry to the spatiotemporal 
continuum;  this is not a purely mathematical affair but depends on local properties of 
space/time and on physical constraints imposed by the environment.  Hence, the 
space/time metaphor is instrumental in forming a useful picture of the real world.  The 
field metaphor associates mathematical entities (scalars, vectors, or tensors) with sets of 
values of the natural processes at the space/time points.  According to the 
complementarity metaphor uncertainty manifests itself as an ensemble of possible field 
realizations that are in agreement with what is known about the environmental 
phenomenon of interest.   
 
Mathematization of the conceptual metaphors generally leads to models.  For example, 
as we shall see in the following section, putting the three metaphors together, and 
translating them into the mathematical language we get the spatiotemporal random field 
model.  Thus, metaphors play a central role in SM, for they allow the mathematical 
constructs of the formal component to be linked to the environmental phenomena of the 
interpretive component and to be regarded as scientific theories.  On the other hand, the 
predictions obtained from these theories are non metaphorical, since they can be tested 
empirically.  The implementation of metaphors in empirical investigations has made 
possible the derivation of a large number of useful models, which involve 
spatiotemporal random fields, stochastic partial differential equations, physical 
geometry, geostatistics, scaling techniques, knowledge integration principles, cause-
effect associations, optimal decision-making, risk assessment, epidemic modeling, etc. 
(a relevant review may be found in Christakos, 1992, 2000; and in Christakos and 
Hristopulos, 1998, Christakos et al., 2005). 
 
Metaphors have been shown to be instrumental in forming useful, realistic pictures of 
the actual phenomenon.  Depending on one's conceptual system and its ability to 
function optimally in a given environment, different metaphors can be associated with a 
particular natural phenomenon, which, in turn, lead to different mathematical models of 
the situation.  In fact, actual reality can only be observable or describable in terms of 
such models on different levels.  In most cases, these modeling levels are not precise but 
rather useful pictures of the real world (e.g., Schommers, 1994).  In SM these reality 
levels are arranged vertically in accordance with their degree of generality (Fig. 1a; the 
sequence of SM levels is denoted as " , , 1, 2,N N N+ +… …").  Thus, a level with a 
higher degree of generality lies above one with a lower degree, in which case the former 
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may be generated by improving the latter.  A scientific law, e.g., belongs to a SM level 
which lies above the level of measuring 
 

 
 

Figure 1:  (a) Actual reality and SM levels of reality representation.  (b) An example of 
SM levels from stochastic subsurface hydrology 

 
instruments (allowing the observation of regions that are not accessible to the naked 
eye), which, in turn, lies above the level of everyday life observations (i.e., theory-free, 
direct sensory observations).  This arrangement, basically, reflects Popper's view that 
the aim of science should be the development of laws and theories with higher degrees 
of verisimilitude (likeness to truth; Popper, 1934)).  We may accept the view that all 
existing laws and theories are likely to be false and yet also holds that they are closer to 
truth than their predecessors.  As a matter of fact, we usually have a series of scientific 
theories regarding the phenomenon of interest with varying degrees of generality and 
verisimilitude.  Each one of these theories corresponds to a different conceptual 
metaphor and associated mathematical model, and using the one or the other should 
depend on the goals of our investigation.  Clearly, no upper limit exists for the number 
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of SM levels.  In many cases, in addition to the vertical direction, a classification of 
models along the horizontal direction is also possible.  Two or more SM developments 
are equivalent when they belong to the same level vertically, but are developed in 
different spaces horizontally.  Therefore, a scientific law associated with a specific SM 
level may be established in various representation frames, such as the physical space, 
the Fourier space, the complex space, or the curved space (an example is shown in Fig. 
1b).  While they are structurally different from each other, all these frames are 
equivalent (from an information viewpoint) and belong to the same vertical position in 
the hierarchy of SM levels).   
 
3. Spatiotemporal Random Field Models 
 
Accurate representations of environmental exposure and its health effects in space and 
time are closely related to the adequate characterization of the natural variability of the 
media in which the pollutants are transported (both physical and biological), as well as 
the adequate processing of the information available regarding the essential parameters 
of the phenomenon.  If these problems are not adequately addressed in risk analysis or 
in calculating pollution levels and clean-up times, erroneous policy decisions may be 
made (e.g., Sarewitz et al., 2000).  A powerful solution to this kind of problems is 
provided by the SM metaphors we discussed above.  In particular, putting the three 
preceding metaphors (i.e., spatiotemporal continuum, field, and complementarity) 
together, and translating them into a mathematical language we get the spatiotemporal 
random field (STRF) model. This model plays a central role in all aspects of SM, for it 
allows the rigorous characterization of complex natural variabilities and uncertain 
effects, accounts for various sources of information and generates space/time maps of 
exposure to environmental pollutants and health effects.  A visual representation of the 
basic concept underlying the random field model is given in Fig. 2.  From a stochastic 
viewpoint, a STRF is fully characterized by its  
 

 
 

Figure 2:  A representation of the random field model 
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multivariate probability law for all possible realizations.  These realizations provide 
access into possible worlds that can become actual ones.  Because it can investigate the 
different forms of space/time correlation that are allowed by the data, a random field 
model can provide multiple permissible scenarios (realizations) and can also 
characterize their likelihood for occurrence.  Space/time variability is treated in an 
integrated manner that accounts for local non-linear trends, temporal non-stationarity, 
random spatial fluctuations, and their cross-effects.   
 
There is a rich variety of ordinary and generalized STRF models that are used in 
environmental sciences.  Various classes of such models are reviewed in Christakos 
(1992, 2000).  In Fig. 3, a classification is shown on the basis of, (a)  natural space/time  
 

 
 

Figure 3:  A classification of STRF models on the basis of natural space/time 
heterogeneity conditions and physical localization conditions. SH: spatially 
homogeneous/ TS: temporally stationary, SNH: spatially non-homogeneous/ 

TNS:temporally non-stationary, and ν μ  parameters characterizing respectively the 
orders of spatial non-homogeneous and temporal non-stationary. 

 
heterogeneity conditions (homogeneous/stationary vs. non-homogeneous/non-stationary 
patterns, space/time trends, etc.) and (b) physical localization conditions (local 
smoothness properties, etc.).   
 
Other classifications --based on different criteria-- are also possible.  In practice, the 
implementation of one specific STRF model over another depends on the form of 
space/time variations and natural heterogeneities considered.  It may also depend on the 
correspondence rules that join non-observable terms (e.g., mean kinetic theory of gas 
molecules) with observational terms (e.g., temperature).  These rules provide the means 
to calculate the statistics of non-observable quantities involved in a theoretical law from 
the statistics of the observable quantities of an empirical law.  The functional form of 
these statistics will influence the choice of the STRF model to represent the 
phenomenon. 
 
Random field representations of environmental pollutants and subsequent exposures can 
be combined with other types of information, such as population density, exposure 
duration, etc., in order to analyze sensitivity and assess the damage caused by 
population exposure.  As we shall see in the following sections, random field models 
have led to considerable advances in the analysis and mapping of composite space/time 
heterogeneities, which are used in real world environmental and human health situations 
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(analysis of water quality indicators, mapping of pollutant distributions, modeling of 
health effect variations, studying levels of excess over limits, etc.).  Random field 
models have been, also, used in biology to represent embryonic formative processes.  
These fields are usually called morphogenetic.  Each kind of cell, tissue, organ, and 
organism is assumed to have its own kind of field, which shape and organize developing 
micro-organisms and stabilize the forms of adult organisms on the basis of their own 
spatiotemporal organization (Sheldrake, 1988).   
 
- 

- 
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