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Summary  
 
Statistical graphics are a critical component of modern data analysis. They play an 
important role in every stage of analysis: for exploratory data analysis to determine the 
broad features of data and relationships between variables; to diagnosis of model 
inadequacies and model refinements; for data summary, storage and retrieval; and for 
compact, forceful reporting of results. Graphics are most powerful when used to 
promote comparisons, and the best graphics are those that transfer complex information 
simply, efficiently and unambiguously. This chapter reviews the use of graphics in a 
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variety of areas of statistical modeling relevant to the life support sciences, including 
models relating several variables, time series models, survival models and describing 
structure in multivariate data. The use of statistical graphics for such models is 
illustrated through a series of examples involving data drawn widely from the life 
sciences.  
 
1. Introduction  
 
Statistical graphics are one of the most powerful tools available for describing and 
assisting in the analysis of data. The power of statistical graphics arises from the fact 
that they can convey large quantities of information both quickly and efficiently, and, 
because they rely on human visual perception, their interpretation is often possible 
despite language and cultural differences. The cliche “a picture paints a thousand 
words” captures the inherent power of graphics quite well, although the extent to which 
it is true (or even understated) depends to a large extent on the skill of the practitioner 
drawing the graphic. Graphics play an important role in every part of a good statistical 
analysis. They are useful for recording and storing large data sets, during analysis of 
data they assist in describing and summarizing the data, and they can be tightly 
integrated with formal analytical statistical tools such as model-fitting techniques so that 
the analysis process can be refined. Graphics are an indispensable tool for 
communicating numerical information and the results of analyses, and are often very 
powerfully used to add force to articles and reports. Graphics are a particularly 
important tool for exploratory data analysis where they can reveal otherwise difficult to 
find structure in data. Graphics can set the groundwork for model-building, suggesting 
possible models by evincing structure in even high-dimensional data sets, and graphics 
plays a central role in model diagnostics where model deficiencies are exposed through 
viewing some diagnostic plots.  

 
 
Figure 1: Four scatterplots depicting Anscombe’s regression data. Least squares straight 
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line fits to each plot yield the same fitted line ( xy 5.03+= ) and numerical regression 
diagnostics are the same between the four data sets. Nevertheless, the graph clearly 

shows that in only the first case is the fitted line a sensible model for the data. The clear 
lesson of this plot is that graphical methods are important first steps in data analysis. 

 
A highly evocative example of the necessity of statistical graphics in data analysis is 
provided by Anscombe’s famous regression data. Figure 1 depicts four data sets for 
which the usual numerical regression descriptors (for example, least squares 
coefficients, regression sums of squares) are identical, but for which the actual 
relationships between the variables are very different, as evidenced by simple 
scatterplots. The power of statistical graphics in this instance is that they show that the 
four relationships on display can be characterized effectively even before any formal 
model-fitting is carried out, and obviously poor models can be ruled out at the start of 
an analysis. Perhaps more importantly, the example shows graphics to be a tool that 
facilitates critical thinking about data.  
 
Good graphics are characterized by having been constructed with a clear purpose and by 
the extent to which they transmit information efficiently and unambiguously. Design is 
an important part of graphical construction, but equally important is the idea that 
graphics should be based on good statistical principles. For instance, graphics based on 
the residuals from a model fit can often reveal more about model deficiencies than a 
simple scatterplot of the original variables. Similarly, the use of data summaries such as 
boxplots as graphical elements can reduce clutter in a graphic while preserving the most 
important features of the data. Design aspects, such as size and aspect ratio, also play an 
important role in how the graphic will ultimately be perceived. Ideally, these design 
aspects should be chosen to reflect balance, proportion and a sense of scale. While 
aesthetics are an important consideration, it is critical to avoid gratuitous decoration as 
sometimes elements used only for their ability to attract attention can interfere with the 
clear interpretation of the graphic.  
 
Where possible, graphics should be constructed with simplicity in mind. Simplicity is an 
elusive quality, as simplicity of design and simplicity of interpretation are often 
competing goals. Complex, cluttered graphics are generally difficult to interpret as the 
clutter itself can interfere with our perception. Clutter can be reduced by choosing 
appropriate plotting characters, judiciously using transformations to avoid data 
congestion within the graphic, carefully choosing what information needs to be included 
on the graphic by reducing the number of variables to be plotted by good statistical 
reasoning, and by using good aesthetic judgment in deciding whether to include 
gridlines or how detailed labels should be. In striving for simplicity, creators of graphics 
need to use what is known about human visual perception to foster good graphical 
construction techniques. For example, straight line relationships are perceived more 
clearly than curved relationships, and so graphics which promote comparisons against 
linear reference curves are simple perceptually. If a user is trying to decide whether data 
is consistent with that arising from a normal distribution, they could compare a 
histogram of the data to a superimposed normal curve, or they could construct a 
quantile-quantile plot where the user assesses the (linear) relationship between the 
ordered data and the normal scores. In the latter case, the graph is simple perceptually as 
deviations from a straight line are easily detected, yet to understand the graphic requires 
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the viewer to understand the mechanics of and be able to interpret quantile-quantile 
plots. As a result, simplicity of perception and simplicity of interpretation can conflict. 
To complicate matters, how simple a graphic is to interpret depends to a large extent on 
the training and the experience of the observer.  
 
Modern statistics can make more use of graphical techniques as routine exploratory or 
analytical tools than was possible in the past, Successful graphic construction benefits 
from a flexible, iterative approach to designing graphics, and modern, fast computing 
facilities can be used to effectively support such an approach. The process of refining a 
graphic and tuning design elements so that information is transmitted simply, efficiently 
and unambiguously is one that demands an appropriate computational environment. 
High-resolution display devices are an important component of a supportive 
environment for graphics, as are systems that are fast enough to support “real time” 
dynamic graphics. Tasks such as being able to rotate the view of high-dimensional data, 
scaling data, subsetting data within a graphic, and “brushing” (highlighting and 
lowlighting, deleting, and labeling) are integral parts of the process of using graphics to 
explore data. Therefore, the programming language that is used to construct graphics 
needs to be flexible enough to allow such tasks to be performed easily, and extensible to 
permit more complex tasks to be performed as necessary. Moreover, the programming 
language used needs to allow the easy modification of numerous graphical parameters 
so that graphics can be refined quickly and simply. In this chapter, all graphics have 
been constructed in the language S-PLUS, an object-oriented statistical programming 
environment. Alternatively, we might also have constructed the graphics using the R 
statistical language, another implementation of the S language which has very similar 
graphics capabilities. 
 
It is worthwhile at the outset to make a distinction between what we might term 
presentation graphics, or graphics that might be used in a final report or an article, and 
analysis graphics, graphics which are important to support an analysis but not intended 
for use in the final report. Examples of presentation graphics that are commonly used 
include bar charts, line or time charts and pie charts. Analysis graphics might include 
residual plots, quantile-quantile plots, leverage plots and so on. Good graphic 
construction principles should underlie graphics of both types, but some elements of 
graphic construction are particularly relevant to one type or the other. For example, the 
idea that background decoration should be either avoided or at the least understated is 
very important for presentation graphics where the dual goal of attracting attention and 
portraying information unambiguously must be met, yet the issue seldom arises for 
analysis graphics. Other elements of good graphic construction are equally important for 
both graphic types – for example, every graphic should carry a clear title and 
unambiguous labels for key graphical elements. Great care must be taken when 
constructing graphics not to unintentionally (or even intentionally!) introduce elements 
into the graphic that interfere with the clear transfer of information. For example, many 
common embellishments of typical presentation graphics such as three-dimensional bar 
charts or exploded pie charts should be avoided altogether as they introduce redundant 
dimensions into the display. Similarly, shadings under line plots can induce viewers to 
consider the area under the line as the relevant graphical element rather than the height 
of the line itself, a choice that can significantly alter what information is obtained from 
the graphic.  
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Graphics that promote clear comparisons are the most powerful. Within a graphic, for 
example, small differences between the heights of bars in a bar chart can make clear 
even slight differences in measurements, while small differences in size between slices 
of a pie chart are not so easily detected. Pie charts, although ubiquitous in the business 
world, are rarely effective, and one of the most influential writers on graphics, Edward 
Tufte, even goes so far as to declare in his popular 1983 book that they should “never be 
used”. Groups of graphics designed to promote comparison between the graphics 
themselves can also be considerably more useful than when the graphics are not 
constructed with comparison in mind. For instance, side-by-side boxplots constructed 
using a single set of axes permit a simple comparison of the characteristics of several 
samples, while boxplots constructed singly make such a comparison inherently more 
difficult.  
 
This chapter is organized as follows. First, in Section 2, graphics describing 
relationships between two variables are described. In Section 3, the problem of 
rendering high-dimensional information graphically is discussed, primarily in terms of 
explaining relationships between a response and several predictors. Graphical 
approaches for describing data developing through time and space are discussed in 
Section 4. Section 5 considers graphics for survival or failure time data. Finally, Section 
6 considers graphics useful for exploring high-dimensional data for structure. Our focus 
throughout the paper is deliberately couched in the context of modeling, and so one-
dimensional data displays such as histograms are mentioned only briefly, and only 
insofar as they are useful in the modeling context. This focus is, we believe, consistent 
with the data structures and questions likely to be of interest to practitioners in the life 
support sciences.  
 
2. Graphs for Models Involving Two or More Variables  
 
2.1. Two-dimensional Graphics  
 
Data in two dimensions permit some of the simpler and easiest to interpret statistical 
graphics since the process of drawing pictures in two dimensions is a well-refined 
human skill. The simplest graphic describing the relationship between two variables is 
the scatterplot which depicts each data pair as a point (x,y) on the Cartesian plane. The 
relationship between the variables can then be described in terms of certain features of 
the scatterplot, such as an overall “trend” or “location” relationship between x and y, 
and the deviation or “spread” of points about that trend line. The terms location and 
spread in this context are extensions of similar ideas commonly used to describe 
univariate data, and are essentially a compact way of summarizing information. For 
example, one might summarize the relationship between two variables through a simple 
linear “trend”, and the “strength” of the relationship might be gauged in terms of how 
close to a straight line the bulk of the data lie, and in how far on average points fall from 
the line. Visual inspection of a scatterplot can lend credence to the belief that the 
relationship between two variables is well-modeled by a linear trend, or it can suggest 
other, more complex relationships. The use of fitted lines and curves to describe two-
dimensional data is a form of smoothing applied to the data, and the resulting picture 
can usually describe the relationship in a very compact form regardless of how 
complicated the relationship between x and y might be.  
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Scatterplot smoothing, the process of representing scatterplot data using smooth curve 
fitting, has attracted considerable interest in the literature. Simple parametric model fits 
including simple linear regression and polynomial regression are useful tools when the 
data plausibly follows such models, but more flexible non-parametric smoothing 
methods such as lowess (locally weighted scatterplot smoothing), which is based on 
averaging local straight line fits to the data, and spline smoothing have gained 
popularity in recent years. These methods rely on user-selected bandwidths that control 
how responsive the fitted curve is to local features of the data. Smoothing methods that 
assist in measuring spread in two-dimensional data are less common, and are often 
based on the deviations of individual data points from the fitted curve, or residuals. 
Location smoothing methods can then be applied to so-called residual plots to describe 
how the spread of data points from the fitted curve behaves.  
 
Scatterplots are useful in both supporting the case for certain types of models to be fit to 
data, and in suggesting what types of models might fit reasonably. By way of example, 
consider Figure 2 which portrays data arising from an extensive study of the 
evolutionary ecology of reproduction of raptors (birds of prey), in which the 
relationship between the average egg volume ( length× breadth2 ) in cubic millimeters 
and a number of explanatory variables for different species was investigated. Here the 
focus is on the relationship between the average egg volume and the average size of the 
female represented by weight in grams for 267 species of raptors. This scatterplot 
demonstrates that as Weight increases, Egg Volume also tends to increase, but the 
precise relationship between the two variables is difficult to describe. The relationship is 
clearly curvilinear, and measurements of Egg Volume appear to be less variable when 
Weight is small than when Weight is large. Moreover, while the graphic itself serves 
relatively well as a compact description of the data, a parametric mathematical model is 
obviously a more compact way to describe the behavior of the data, and so an important 
question is how the initial graphic presented in Figure 2 can be used to suggest a 
reasonable model for the data.  

 
Figure 2: Scatterplot of average egg volume versus average weight of females for 267 
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species of raptors (birds of prey). Note the curvature in the plot and the non-constant 
variance.  

 
One strategy often pursued in attempting to answer this question is that of searching for 
appropriate transformations of the original variables so that a plot of the transformed 
variables displays a roughly linear pattern with roughly constant spread of data points 
about the line. From a modeling standpoint, this approach can allow simple linear 
models to be fitted on the transformed scale under the usual linear model assumptions. 
The relationship between the original variables can then be summarized by “back-
transforming” the variables in the linear model fit. The strategy of searching for a linear 
relationship between transformed variables is also desirable from the graphical 
considerations of simplicity, aesthetic appeal and interpretability. Linear relationships 
are easy to interpret, and departures from linearity are particularly easy to detect 
visually. Ultimately, however, the relationship between the original variables may not 
prove to be simple either to describe or to interpret, and careful thought is required at 
each stage of the transformation process as to how the relationship between the original 
variables might best be summarized. 
 
There are two main approaches to choosing appropriate transformations to linearize a 
relationship: empirical and theoretical. The empirical approach can be as simple as 
trying a range of transformations until a satisfactory result is observed. An automatic 
technique selects a transformation from the class of power transformations so that a 
particular fitting criterion is minimized. Unfortunately, these methods can produce 
somewhat arbitrary or difficult-to-interpret model choices, but they have the advantage 
of being easy to implement and being data-driven. The theoretical approach relies on 
outside knowledge of the situation guiding the researcher as to what kinds of 
transformations might be appropriate. For instance, a researcher might suspect that the 
response has a simple relationship with the square of a predictor (say the response is an 
area measurement while the predictor is a length measurement). In that case, a plot of 
the response versus the predictor squared should produce a linear graph. There is a 
sense in which serendipity plays an important role in analyses of this kind, as the goal of 
finding a single transformation that both linearizes the relationship between the 
variables and which yields a constant variance for the transformed response is 
sometimes unattainable. Nevertheless, when there is a credible theoretical model for the 
relationship, it is worth using that information to try to find a reasonable transformation 
of the data. The benefit of plotting the transformed variables is that it will invariably 
yield information about both the location and spread characteristics of the transformed 
relationship.  
 
Figure 3 depicts the relationship between log(Weight) and log(Egg Volume) for the 
raptor data. The shape of the relationship between the transformed variables is close to 
linear, and the spread also appears roughly constant. Closer examination of the residuals 
from a linear model fit between the transformed variables reveals that the linear fit is 
not quite as good as we might hope, and further investigation suggests that a more 
complicated model involving not only log(Weight) but also {log(Weight)}2 results in a 
slightly better fit. This discovery poses a difficult but common question in data analysis: 
which model should be preferred, the poorer-fitting but simpler to interpret model or the 
better-fitting but more complicated model? The answer to this question depends 
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critically on the context in which the question arises. If accurate prediction at low 
weight is paramount, then the better-fitting model may be preferable; if, on the other 
hand, the important issue is the broad nature of the relationship, we may be satisfied 
with the simpler to interpret description provided the model diagnostics prove 
satisfactory. In this case, an advantage of the log scales is that the slope (approximately 
two-thirds) has an immediate interpretation. The finding that Volume is approximately 
proportional to (Weight)

2
3  suggests that eggs become substantially denser as they grow 

larger. Since departures from linearity in Figure 3 occur mainly for low values of 
Volume and Weight, but the linear model fits well elsewhere, we may prefer the simpler 
model as it is both easily interpreted and it fits well over most of the data range. In cases 
where no appropriately simple model can be isolated, we could also simply use the 
original scatterplot enhanced by the use of, say, a lowess smoother as a compact 
description of the relationship.  
 

 
Figure 3: Scatterplot of log average egg volume versus log average weight of females 

for 267 species of raptors. A least-squares fitted line is superimposed.   
 

- 
- 
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