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Summary 

To think statistically is to know that the measurements taken in an experiment are 
subject to systematic and random sources of variation, and that it is beneficial to base 
methods of data analysis on probabilistic models. Mathematical results from statistical 
theory indicate certain types of distributions that govern fluctuations in data, and some 
of these results are reviewed as they bear on statistical analysis in the laboratory and 
basic sciences. An example of statistical thinking to advance knowledge in molecular 
biology is described, as are some general strategies for statistical analysis that may be 
appropriate for a collaborating statistician. Four case studies demonstrate these 
concepts.  
 
1. Introduction  
 
Only by measurement does the experimentalist record features of the system that he or 
she is studying, be the system a population of insects growing in the laboratory or the 
network of biochemical events that cause a cell to divide or a tumor to grow. 
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Measurements arise in a context within which their naked numerical form acquires the 
weightier status of information. The process of extracting information from numerical 
data is a central issue in the field of statistics generally and in applications of statistics to 
laboratory and basic sciences.  
 
Were it known with certainty the numerical values of measurements that are about to be 
taken in some experiment, it would seem to be a waste of effort to take the 
measurements at all! Measurements are unpredictable. Even with a good understanding 
of the measurement process and the system being studied, one often acknowledges that 
precise recordings will exhibit unpredictable fluctuations caused by different sources of 
variation. In spite of these fluctuations, part of the variation may be more systematic, 
and repeated measurement may elucidate these systematic sources. Statistical methods 
are ways of processing numerical data for the purpose of drawing inferences about the 
system: inferences may be to estimate a parameter, test a hypothesis about the 
parameter, classify an experimental unit into one of several groups, assess the 
relationship between two factors, predict future measurements, or decide on one of 
several courses of action in an ongoing experiment.  
 
Statistical methods become enacted during data analysis. The statistical approach to data 
analysis is founded on the premise that measurements are the realization of a stochastic 
process. This has a significant effect on the tone of deliberations because emphasis 
shifts immediately from the particular data in hand to the process by which the data 
arise. Indeed, many formal discussions distinguish the data which does occur, say x , 
from the stochastic process X : the function or rule which reveals the actual data 

( )X xω =  when the experiment is instantiated as one particular outcome ω  amongst a 
universe of possibilities. This reversion from what actually is measured to what might 
be measured seems at first to complicate matters, but it is a necessary template for the 
theory of probability, and it provides a means to make precise quantitative statements 
about things that are intrinsically unpredictable. Of course it is not to say that the actual 
data x  are ignored – far from it; rather, the significance of particular irregularities in x  
is gauged in part by the probabilities governing X .  
 
This chapter considers elements of statistical thinking that arise in laboratory and basic 
sciences. The comments are informed primarily by the experience of being a research 
statistician who collaborates with biological scientists, and the emphasis is much more 
on statistics in molecular biology than statistics in the basic sciences generally. Some 
mathematical results from statistical theory described in the next section are followed by 
some comments on the role of statistics at different levels of investigation. This is 
followed by a discussion of data analysis strategies and then a series of four case studies 
in which statistical thinking has been helpful.  
 
2. Theory: Universal Distributions 
 
There is great diversity in the systems being studied in basic science laboratories. One 
of the contributions of statistical theory is to identify common structures present in a 
wide range of experiments — in particular, common features of the variation of certain 
measurements. The Poisson limit law is a good example. Suppose that the system under 
consideration is comprised of a large number n  of experimental units, and each of these 
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units provides a binary response to some query. For instance, millions of bacterial cells 
are growing in culture and one asks whether or not each cell has a particular genetic 
mutation at one locus in the genome. The total number Y  of units which have one of the 
binary states may be a quantity of some interest as it may affect the experimental design 
to pinpoint the locus, for example. Under a wide range of conditions on the basic binary 
variables it is known that fluctuations in Y  are well approximated by a Poisson 
distribution:  
 
Prob( ) 0 1yY y e y y …λλ−= = / ! = , ,  
 
where λ  is the expected value of Y . Usually this result is presented in the special case 
where the binary variables are independent and identically distributed Bernoulli random 
variables. Then the sum Y  has a Binomial distribution with parameters n  and p , the 
common expectation of all the Bernoulli variables. With large n  and small p , and 

npλ ≈ , the Poisson approximation becomes valid. The assumptions of independence 
and common distribution of the binary variables are rather strict, and evidence has 
mounted that the Poisson approximation may work much more broadly. Indeed the 
Poisson clumping heuristic theory extends the result significantly; there can be quite 
complicated forms of dependence amongst the binary variables and still the Poisson 
limit holds. This is important since in many examples some dependence is expected. For 
instance, cell lineage effects will cause statistical dependence in the bacterial growth 
example.  
 
The most important universal distributional result is the central limit theorem which 
concerns fluctuations in the arithmetic mean of a random sample. It provides conditions 
under which the sampling distribution is Gaussian (bell-curved) regardless of the nature 
of fluctuations in the variables which comprise the sample mean. Indeed the theory is 
really a collection of results dating back to the early work on probability by many 
including de Moivre, Laplace, and Gauss, and culminating with 20th century work by 
Polya, Lindeberg, Feller, Levy and others.  
 
Other universal laws receive perhaps less attention but are still very important for 
making connections between diverse problems. When appropriately centered and 
scaled, for example, the largest observation in a large random sample must exhibit 
variations from one of exactly three well-characterized distributional forms, regardless 
of the sampling distribution of the data (This is sometimes called the extreme value 
trinity theorem, developed by E. J. Gumbel and others.) The Erdos-Renyi law and 
extensions of it concern the distribution of long head-rich runs in sequences of coin 
tosses, and this has found significant application in problems of matching biomolecular 
sequences. Universal long-range dependence structures have been identified in certain 
kinds of time-series measurements also. Often distributional forms arise as the 
stationary distribution of a Markov process characterizing random fluctuations in the 
system over time. For example the Gamma distribution is the stationary distribution of 
abundance when a population evolves stochastically according to certain constraints. 
Knowing these universal laws assists both experimental design and data analysis. They 
can be used for ‘back-of-the-envelope’ sample size calculations, and they can form the 
basis for more detailed modeling efforts.  
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3. The Role of Statistics 

3.1. Exceptional Cases 

A beautiful illustration of statistics in the service of the basic laboratory sciences is the 
work by S. E. Luria and M. Delbrück concerning heritable changes in bacteria. Before 
Luria and Delbrück’s work in the 1940’s it was well known that a bacterial culture 
exposed to a certain virus could readily die out, but that periodically there would 
emerge clones of resistant bacteria. Various explanations presented themselves. 
Possibly some of the bacterial cells adapt to the invading virus and survive to form a 
resistant colony. Contrary to this adaptation hypothesis is the mutation hypothesis, 
which has stood the test of time and which is a central element in modern bacteriology. 
The mutation hypothesis asserts that bacterial variants (i.e., mutants) arise during 
normal growth of the colony, and that certain mutants resistant to the virus may by 
chance exist in the culture prior to viral infection. If so, they emerge for observation 
simply by the process of selection after the virus has killed the sensitive cells; the virus 
itself does not effect an adaptation of the bacterial cells.  
 
The ingenious experiment devised by Luria and Delbück to address the problem 
involved a comparison of the variance of resistant cell counts grown under different 
conditions. In one condition separate cultures each grew from a very small initial 
population size; in the control condition a single large colony was separated into a 
similar number of separate cultures. All cultures then were exposed to the bacteriophage 
(virus) and counts were made of the number of resistant cells in each culture. 
Regardless of how bacterial variants arise, one can argue that in cultures grown in the 
control condition (i.e., from subsets of a large colony) there should be Poisson variation 
in the number of resistant cells. On the adaptation hypothesis, this same level of 
variation is expected in cultures of the first type, however the mutation hypothesis 
predicts extra-Poisson variation. Cultures in which a resistant mutant arises early will 
present a very large number of resistant cells compared to cultures in which the mutant 
arises later. It was by comparing the variation in cell counts between these two 
conditions that evidence favoring the mutation hypothesis was derived.  
 
Having a statistical argument central to a major scientific advance is fascinating, 
especially for people dedicated to the study of statistics; but it seems that such elegant 
Luria-Delbrük-like case studies are the exception rather than the rule in the application 
of statistics in the laboratory and basic sciences. Certainly there are wonderful case 
studies — the formulation of the idea of a tumor suppressor gene was a fundamental 
advance in cancer research brought about by the work of A.G. Knudson in his statistical 
analysis of retinoblastoma; the ability to map genes such as those responsible for 
Huntington’s disease and cystic fibrosis is based on statistical properties governing the 
transmission of DNA during meiosis; the work of Sewall Wright used the variance of 
phenotypes in different experimental crosses to estimate the number of genetic loci 
affecting the phenotype. What will be the next great advance?  

3.2. Endemic Methods 

The ordinary application of statistical thinking in scientific discourse is to characterize 
imperfect knowledge; it forms one step of many to compile, describe, and report 
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experimental results. At this level statistical discourse is a basic language for dealing 
with intrinsic variability; it is endemic in the sense of being regularly occurring, and it 
affects numerous steps in experimental design and data analysis. As examples of 
statistical questions consider the following: Upon measuring a cell proliferation rate in 
two different conditions, are the observed rate differences more than one expects by 
chance alone? If not, then it may be justified to treat the two conditions as one. When 
measuring some property of a cell type by preparing cells at different liquid dilutions, 
how can the measurements be combined efficiently across dilutions? In studying the 
production of some chemical compound, how can one identify optimal settings of 
several factors that affect production? Related questions are addressed in the case 
studies described later.  
 
Supporting the notion that statistical methods are endemic is the fact that basic 
statistical calculations are embedded in much of the operating software of modern 
laboratory equipment. For example, a flow cytometer is an important device to 
determine properties of cells by measuring scattered light and fluorescence of 
mobilized, fluid-suspended cells. Part of the sophisticated computations built into a 
cytometer is a statistical discriminant analysis to classify individual cells by features 
such as cell size or granularity. Statistical discriminant analysis is part of the electronic 
nose, a device to detect airborne scents for use in food quality testing and other 
applications.  
 
Statistical calculations are also embedded in the basic protocols of many high-
throughput laboratory methods. For example, the technique of comparative genomic 
hybridization measures DNA copy number variation in cancer cells by processing 
fluorescence image intensities from labeled tumor and normal DNA that have 
competitively hybridized to immobilized DNA on a glass slide. Intensity signals from 
the two sources are measured all along the genome, and statistical signal processing is 
used to decide when one channel is significantly stronger than the other. Further, DNA 
microarrays are now widely used to measure simultaneously the level of gene 
expression of thousands of genes.  
 
A large amount of raw image data constitutes the results of one measurement, and this is 
processed to create a single record for each gene by a series of statistical manipulations 
of the image data. For instance, with spotted cDNA microarrays, an algorithm is used to 
localize each spot, account for local background fluorescence, and normalize 
measurements across the microarray. Statistical methods are used in these cases, and 
elsewhere, because they can automatically process large amounts of raw data in a 
potentially meaningful way.  
 
- 
- 
- 
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