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Summary 
 
The six chapters  “Matrices, Vectors, Determinants, and Linear Algebra “, “Groups and 
Applications”,  “Rings and Modules”, “Fields and Algebraic Equations”, “Number 
Theory and Applications”, and “Algebraic Geometry and Applications”  cover basic 
concepts and notions in algebra, which are usually taught to mathematics majors in 
colleges and universities at undergraduate and beginning graduate levels.  
 
However, there are many other key concepts and notions in algebra that play important 
roles not only in mathematics but in many other disciplines in science thanks to their 
very abstraction.  
 
Due to space limitation, only a few of them are explained here. The concepts and results 
in the six chapters are freely used.  
 
1. Equivalence Relations 
 
One of the basic concepts in modern mathematics is an equivalence relation on a set, 
which generalizes the notion of equality and which in fact appeared already in the six 
chapters.  
 
An equivalence relation ~ is said to be defined on a set X  if any given pair of elements 
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x y X, ∈  satisfy either ~x y  or ~x y  and if the following conditions are satisfied:  
 
(Reflexive)   ~x x  holds for any x X∈ .  
(Symmetric)   ~x y  implies ~y x .  
(Transitive)   ~x y  and ~y z  imply ~x z . 
 
More generally, a relation on a set X  could be defined as a nonempty subset 
R X X⊂ ×  of the product set of X  with itself. In the case of an equivalence relation, 
the subset R  is 
 

{ }( ) ~R x y X X x y:= , ∈ × ,  
 
which satisfies the following conditions corresponding to those above:  
 
(Reflexive)   ( )x x R, ∈  for any x X∈ .  
(Symmetric)   ( )x y R, ∈  implies ( )y x R, ∈ .  
(Transitive)   ( )x y R, ∈  and ( )y z R, ∈  imply ( )x z R, ∈ .  
 
The equality =  of elements in a set X  is certainly an equivalence relation, with 

{( ) }R x x x X= , | ∈  being the diagonal.  
 
To define an equivalence relation on X  also coincides with giving a decomposition of 
X  into a disjoint union of nonempty subsets 
 

(disjoint) with ( )i i j
i I

X X X X i j
∈

= ∩ = ∅ ≠∪  

 
The corresponding equivalence relation is 
 

~ if and only if for someix y x y X i I, ∈ ∈ .  
 
Given an equivalence relation ~ on X , let  
 

{ }( ) ~ for eachX a x X x a a X:= ∈ ∈ ,  
 
which is called the equivalence class containing a . Then for any a b X, ∈  one 
obviously has either ( ) ( )X a X b=  or ( ) ( )X a X b∩ =∅ . One can choose an element 
from each equivalence class to form a subset of representatives { }i i Ia X∈ ⊂  giving rise 
to the decomposition  
 

( ) (disjoint)i
i I

X X a
∈

= ∪  

 
corresponding to the equivalence relation.  
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Another way of defining an equivalence relation is to give an onto map X Qπ : →  
called the projection to the quotient set Q . The corresponding equivalence relation is 

~x y  if and only if ( ) ( )x yπ π= . This gives rise to the corresponding decomposition  
 

1 ( )
q Q

X qπ −

∈
= ∪  

 
Given an equivalence relation ~ on X , the corresponding quotient set ~Q X=: /  is 
nothing but the set of equivalence classes, and the projection ~X Xπ : → /  sends each 
a X∈  to its equivalence class ( ) ( )a X aπ := .  
 
Here are examples of equivalence relations:  
 
(1) Let H  be a subgroup of a group G . For x y G, ∈ , define ( )modx y H≡  by 

1x y H− ∈ , which is obviously equivalent to xH yH= . This is easily seen to be an 
equivalence relation, and the equivalence class containing x  is the left coset xH . The 
corresponding quotient map is G G Hπ : → /  sending x G∈  to ( )x xHπ := . There is an 
obvious analog with respect to the right cosets Hx .  
(2) When N  is a normal subgroup of a group G , one has xN Nx=  for each x G∈ . In 
this case G N/  is a group under the group law ( ) ( )xN yN xyN⋅ :=  that turns out to be 
well-defined thanks to the normality of N  in G . One calls G N/  the quotient group 
with respect to N . The projection G G Nπ : → /  is an onto homomorphism of groups 
with kernel ker( ) Nπ = .  
(3) Let R  be a commutative ring with 1 0≠ , and I R⊂  an ideal with I R≠ . For 
x y R, ∈ , define ( )modx y I≡  by x y I− ∈ . This is easily seen to be an equivalence 
relation. The equivalence class containing x R∈  is the coset x I+ . The quotient set 
R I/  turns out to be a commutative ring with respect to the addition 
( ) ( )x I y I x y I+ + + := + +  and the multiplication ( ) ( )x I y I xy I+ ⋅ + := +  with the 
identity 1 0I I+ ≠ + . One calls R I/  the residue ring of R  with respect to I . The 
corresponding projection R R Iπ : → /  sending x R∈  to ( )x x Iπ := +  is an onto ring 
homomorphism with kernel ker( ) Iπ = .  
(4) For a commutative ring R  with 1 0≠ , let M  be an R -module, and N M⊂  an R -
submodule. For x y M, ∈ , define ( )modx y N≡  by x y N− ∈ . This is easily seen to be 
an equivalence relation. The equivalence class containing x M∈  is the coset x N+ . 
The quotient set M N/  is an R -module with respect to the addition 
( ) ( )x N y N x y N+ + + := + +  and the scalar multiplication ( )a x N ax N+ := +  for 
a R∈ . One calls M N/  the quotient R -module of M  with respect to N . The 
corresponding projection M M Nπ : → /  sending x M∈  to ( )x x Nπ := +  is an onto 
homomorphism of R -modules with kernel ker( ) Nπ = .  
( 4′ ) For elements x y,  in a vector space V  over a field K  (e.g., , ,K =_ \ ^  ) and a K -
linear subspace W V⊂ , define ( )modx y W≡  by x y W− ∈ . This is easily seen to be 
an equivalence relation. The equivalence class containing x V∈  is the coset x W+ . The 
quotient set V W/  is a K -vector space with respect to the addition 
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( ) ( )x W y W x y W+ + + := + +  and the scalar multiplication ( )a x W ax W+ := +  for 
a K∈ . One calls V W/  the quotient K -vector space of V  with respect to W . The 
corresponding projection V V Wπ : → /  sending x V∈  to ( )x x Wπ := +  is an onto K -
linear map with kernel ker( ) Wπ = .  
(5) A group G  is said to act on a set X  if there is given a map G X X× →  sending 
( )g x G X, ∈ ×  to gx X∈  that satisfies 
 

( ) ( ) and for allg g x gg x ex x g g G x X′ ′ ′= , = , ∈ , ∈ .  
 
x y X, ∈  are defined to be equivalent if they are in the same G -orbit, that is, there 
exists g G∈  such that y gx= . This is easily seen to be an equivalence relation. The 
equivalence class containing x  is its G -orbit { }Gx gx g G:= | ∈ . The corresponding 
decomposition is the orbit decomposition 
 

(disjoint).i
i I

X Gx
∈

= ∪  

 
The quotient set consisting of G -orbits is called the orbit space and is denoted X G/  
(one also denoted this by G\ X  to emphasize that the action is from the left) with the 
projection map X X Gπ : → /  sending x X∈  to its G -orbit ( )x Gxπ = .  
(6) In the ( 1)n + -dimensional complex vector space 1n+C , let 1 \ { }nX O+:= C  with 

1(0 0 0) nO … +:= , , , ∈C . The multiplicative group \{0}× :=C C�  of nonzero complex 
numbers acts on X  by scalar multiplication 
 

0 1 0 1( ) ( )n nt t … t t t … tλ λ λ λ, , , := , , ,  
 
for λ ×∈C  and 0 1( )nt t … t X, , , ∈ . The ×C -orbit of 0 1( )nt t … t, , ,  is  
 

0 1 0 1[ ] {( ) }n nt t … t t t … tλ λ λ λ ×, , , := , , , | ∈ .C  
 
The orbit space is the n -dimensional complex projective space  
 

1( \ { })n n O+ ×:= / .P C C  
 
- 
- 
- 
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