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Summary

A down-to-earth introduction of matrices and their basic operations will be followed by
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basic results on determinants, systems of linear equations, eigenvalues, real symmetric
matrices and complex Hermitian symmetric matrices.

Abstract vector spaces and linear maps will then be introduced. The power and merit of
seemingly useless abstraction will make earlier results on matrices more transparent and
easily understandable.

Matrices and linear algebra play important roles in applications. Unfortunately,
however, space limitation prevents description of algorithmic and computational aspects
of linear algebra indispensable to applications. The readers are referred to the references
listed at the end.

1. Matrices, Vectors and their Basic Operations

1.1. Matrices

A matrix is a rectangular array
8; A, & &,
& &y a2j 8y,

ail aiz - a. v a

aml amz amj a'mn
of entries a,,,...,a,,, which are numbers or symbols. Very often, such a matrix will be
denoted by a single letter such as A, thus

a; a, -y &g
& a8, v a2j 8y,

ail aiz - - a

aml amz a'mj amn

The notation A= (a;) is used also, for short. In this notation, the first index i is called
the row index, while the second index j is called the column index.

Each of the horizontal arrays is called a row, thus
(811> g5 0r @ jrees B )5 (B0, Bgsees By ey A )y (Bigs Bigrves By eevs B ) ves (Bpigs B ves Ao ves A

are called the first row, second row,..., i-th row,..., m-th row, respectively. On the
other hand, each of the vertical arrays is called a column, thus
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Ay a, a; e
8, &, & &

a‘il alZ aij ain
a‘ml a‘m2 a‘mj a‘mn
are called the first column, second column,..., j-th column, ..., n-th column,

respectively. Such an A is called a matrix with m rows and n columns, an (m,n)-
matrix, or an mxn matrix.

An (m,n)-matrix with all the entries 0 is called the zero matrix and written simply as
0, thus

0 --- 0
0:= '

0 --- 0
1.2. Vectors

A matrix with only one row, or only one column is called a vector, thus
(8,85, ,..,,)

is a row vector, while

is a column vector.

The rows and columns of an (m,n)-matrix A above are thus called, the first row
vector, second row vector,..., i-th row vector,..., m-th row vector, and the first column
vector, second column vector,..., j-th column vector, ..., n-th column vector.

A (L1) -matrix, i.e., a number or a symbol, is called a scalar.

1.3. Addition and Scalar Multiplication of Matrices
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The addition of two (m,n)-matrices A =(g;) and B =(b;) are defined by

a,+by  a,+h, - oa;+b; - oa,+b,
a21+b21 a?2+b22 a2j + b2j R b2n

A+B=(a +b)=| ' '
" (a” ’ ”) ay+by  a,th, - &; + bij gy +hy,
aml + bml amz_i_bmz o amj + bmj e amn + bmn

when the addition of the entries makes sense. The multiplication of a scalar ¢ with an
(m,n) -matrix A =(a;) is defined by

Ca, ca, - Ca; - Ca,

Ca,, Ca, - Ca‘2j o Cay,
CA:=(cq;) =

Ca, Ca, - Cg - Ca,

Ca‘ml Camz '” Camj t Camn

when the multiplication of a scalar with the entries makes sense.
1.4. Multiplication of Matrices

What makes matrices most interesting and powerful is the multiplication, which does
wonders as explained below.

Suppose that the entries appearing in our matrices are numbers which admit
multiplication. Then the multiplication AB of two matrices A and B is defined when
the number of columns of A is the same as the number of rows of B .

Let A=(a;) be an (I,m)-matrix and B =(b,) an (m,n)-matrix. Then their product is
the (1,n) -matrix defined by

AB:=(c,), with c, =) ab,,
-1

or more concretely,
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AB =

ailbll +"'+a1mbm1

a,b,+---+a.Db

im™~ml

a,b, +---+a,b

Im™~m1

allblk toeet a1mbmk

a,b, +---+a,b

im™~mk

a,b, +---+a,b

Im™~mk

allbln toeet aimbmn

a,b, +---+a,.b

im~mn |°

a,b, +--+a,b

Im™~mn

Of particular interest is the product Av of an (m,n)-matrix A =(a;) with a column
vector v of size n, which is the column vector of size m defined by

8y

a;
a’lj ain
amj amn

Vi

g Vy o+,

Vv, +---+aq.V,

a Vv +--+av,

as well as the product uA of a row vector u =(u,,...,u,,) of size m with A, which is
the row vector of size n defined by

(UpyeensUsyanU )| @G

=(u1a11+' ’ '+umam1" y ’ulalj + '+umamj ”* ’u1a1n+' ’ '—H'Imamn)'

8y,

a

ml

&

a

mj

By

a

mn

The transpose A" of an (m,n)-matrix A = (;) is the (n,m)-matrix defined by

AT = (a'ji),

or more concretely,

Ay
E)

a12 alj
a22 a2j
Q, - aij
a‘mZ amj

with a’ji =a

ij°

ail aZl
a, &,
Tla, a,
a1n aZn
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For an (I,m)-matrix A and an (m,n)-matrix B, it is easy to see that
(AB)" =B"AT,
when the multiplication of the numbers concerned is commutative.

When A and B are (n,n)-matrices, both products AB and BA make sense, but they
need not be the same in general.

2. Determinants
2.1. Square Matrices

Square matrices, namely matrices with the same number of rows and columns, are most
interesting.

Special among them is the identity matrix of size n, denoted by I or I, and defined by

1 0
I = In = L= (5” ),
0 -~ 1
where &; is known as Kronecker’s delta defined by
§W:F ?zy
0 1# ]

For an arbitrary (m,n)-matrix A, the following clearly holds:

A=A and Al =A.

m n

The matrix cl with the same entry ¢ along the diagonal and 0 elsewhere is called a
scalar matrix.

More generally, a square matrix D=(d;) of size n is called a diagonal matrix if
d; =0 for i = j, thatis,

d, 0 0
5| 0 o 0
0 0 d

2.2. Determinants
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Let A=(a;) be asquare matrix of size n (also said to be of order n), that is, an (n,n)-
matrix or an nxn matrix. When the entries a; are numbers (rational numbers, real

numbers, complex numbers, or more generally elements of a commutative ring to be
introduced in Rings and Modules), for which addition, subtraction and commutative
multiplication are possible, associated to A is a number called the determinant of A
and denoted by | A| or by det(A).

When n=1 or n=2, the determinant is defined to be

CTIC

‘=4a,,a,, —a;,a,,.
a, a, 818, — a8,

‘an‘ =ay,

For n=3, the formula is a bit more complicated.

a, &, daj
& &y By 1= 8y385,855 + 81,8538, + 8y38y85) — A38,,85 — 418,385, — 81,3,5,85;.
dy & A

The determinant of A =(a;) for general n is defined as follows:

a; &,
: S ngn(a)ama)aw(a @iy T Qg(ny»
anl T ann 7
where o runs through the permutations of the indices {L2,...,...,n}, and sgn(oc) is the

signature of o to be defined elsewhere in Groups and Applications, since it is not so
practical to compute the determinant using this formula. Instead, there is an inductive
way of computing the determinant: If how to compute the determinants of square
matrices of size n—1 is known, then the determinant of a square matrix A of size n is
defined by

n
A= zalelj =apAy tapA, ++aA,,
=

where, for i and j in general, A. isthe (i, j) -cofactor of A defined by

i
A :=(=1)"’ det( A with the i-th row and the j-th column removed ).

This formula is known as the expansion of | A| with respect to the first row. In fact, it
can be shown that the expansion with respect to the i-th row for any i=1...,n gives
rise to the same number:
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n
|Al= Z a‘iinj =8, Ay T &0, T+ 34,
=1

A similar formula holds when the role of rows and columns is interchanged, that is, the
expansion of |A| with respect to the j-th column holds as well. In particular,

AT|=[A.
For square matrices A and B of size n, it can be shown that

|AB=[A[|B.
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