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Summary 
 
The study of physical phenomena usually requires mathematical modeling. For the 
computer solution the exact mathematical model has to be approximated by a suitable 
numerical model. By far the most frequently used numerical models take the form of a 
linear system of equations. 

 
This article is dedicated to the elementary exposition of several important concepts 
needed for understanding and appreciating the surprising depth of the numerical 
procedures for solving this seemingly well understood simple system. As we will show 
in the following, even the simplest linear system of two equations in two unknowns is 
instructive. 

 
The types of problems we consider are linear system of n  equations in n  unknowns 
( 1,2,3,...)=n  and eigenvalue problems. 
 
1. Linear Systems of Equations 
 
Mathematical modeling of physical phenomena leads to mathematical equations from 
which the unknown quantities are to be computed. The subject of numerical analysis 
includes the development of numerical procedures suitable for the computer solution 
and the relevant error analysis. The most basic equation of Mathematical modeling is a 
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linear system of n  equations in n  unknowns. ( n  may be any natural number 
sometimes as large as several millions), 
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or in matrix form 
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where the coefficient a’s and the right hand side b’s are known and the x’s represent the 
unknowns to be found, or more compactly as,  
 
Ax = b ,  (1.3) 
 
where 
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A more general linear system of m  equations in n  unknowns, 
 
Ax = b   (1.5) 
 
may be considered, where A is a given ×m n  matrix, x  is the unknown 1×n  matrix 
and b  is a known 1×m  matrix (column vector): 
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 (1.6) 

 
2. An Example 
 
Consider the following simple linear system in two equations and two unknowns, 
 

0.780 0.563 0.217
0.913 0.659 0.254.

x
x
+ =⎧

⎨ + =⎩

y

y
    (2.1)  
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This example is due to G.E.Forsythe. The system has a unique solution since the 
determinant of the coefficient matrix is nonzero: 
 
0.780 0.563

(0.780)(0.659) (0.563)(0.913) 0.000001
0.913 0.659

= − =  

 
In fact, the reader can verify that 1x =  and 1−y =  is the solution. 
 
Suppose that a person A proposed an approximate solution 0.999x = , 1.001= −y  and 
another person B 0.341x = , 0.087= −y : 
 

 Unknown Exact 
solution 

Approximate Solution 
by Person A 

Approximate 
Solution by Person B 

 

x  1 0.999 0.341 (2.2) 
y  -1 -1.001 -0.087  

 
Let us consider the following problem: which is a better approximate solution, that of 
person A or that of person B? 
 
Comparison with the exact solution shows that the first approximate solution looks 
better than the second solution. However, substitution of approximate solutions into the 
given system shows that the second approximate solution yields less discrepancy 
(residuals) between the value of the left hand side and the value of the right hand side. 
Indeed, for the case of the approximate solution by person A, 
 
(0.780)(0.999) (0.563)( 1.001) 0.217 0.001343
(0.913)(0.999) (0.659)( 1.001) 0.254 0.001572,

+ − − = −
+ − − = −

 (2.3) 

 
and for the case of the approximate solution by person B, 
 

 
(0.780)(0.341) (0.563)( 0.087) 0.217 0.000001
(0.913)(0.341) (0.659)( 0.087) 0.254 0.

+ − − = −
+ − − =

 (2.4) 

 
The question, then, is: which one is really a better approximation, the first pair or the 
second pair? The answer: It depends on how one measures the error. Indeed, either one 
may be taken as a measure of error. The criterion or the choice comes from the nature of 
the given problem. Let us delve into this question later. For the present, we will first 
reformulate the question or we consider the question from a different viewpoint. 
 
Using matrix notation, 
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the relations (2.1), (2.3) and (2.4) are written respectively 
 

A A B BAx = b, Ax = b +Δb , Ax = b +Δb   (2.6) 
 
The second equation of (2.6) shows that Ax , the approximate solution proposed by 
person A to the given equation 
 
Ax = b   (2.7) 
 
gives the exact solution of the slightly perturbed equation. 
 

A A= ΔAx b + b  . (2.8) 
 
Similarly , Bx  gives the exact solution of the perturbed equation 
 

B B= + ΔAx b b   (2.9) 
 
In other words, by perturbing the right-hand side b  of the given equation from b  to 

A+ Δb b  the exact solution changes from x  to Ax . 
 
This viewpoint of regarding approximate solutions as exact solutions of slightly 
perturbed systems leads to what is known as the backward error analysis. Its virtue is 
that is allows us to introduce the concept of stability. This generic term refers to how the 
solution changes according to changes in data. In other words, we are concerned with 
how the solutions x  and y  change according to changes in data a, b, c, d, e, f in 
 

a b x e
c d f
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦y

      (recap of the first equation of (2.6)) (2.10) 

 
It is J.H. Wilkinson, British numerical analyst and the 1970 Turing Award recipient, 
who should be credited as being the earliest to use this viewpoint most effectively. His 
many books are still considered as classics, sometimes even as a bible. It is this 
viewpoint that we adopt in order to answer the question at the beginning. 
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3. Condition Number 
 
Returning to the main stream, we have the following general theorem: 
 
Theorem 3.1 Consider two sets of linear systems 
 

,
ax b e ax b e e
cx d f cx d f f

+ = + = +⎫ ⎫
⎬ ⎬+ = + = +⎭ ⎭

y y

y y

′ ′ ′
′ ′ ′

  (3.1) 

 
where 0ad bc− ≠ . The second system is the system obtained from the first by 
perturbing the right-hand side, e  to e e+ ′  and f  to f f+ ′ , respectively. The solution 
x  and y  change to x′  and y′  according to this perturbation. Then, the following 
inequality is known: 
 

 
1

,
e f x x e f

C
C e f x e f

+ − + − +
≤ ≤

+ + +
y y

y

′ ′ ′ ′ ′ ′
  (3.2) 

 
where 
 

{ } { }max , max ,
.

a c b d c d a b
C

ad bc
+ + ⋅ + +

=
−

 (3.3) 

 
The theorem may be interpreted as follows. If we measure the rate of change  in solution 
by ( ) /( )x x x− + − +y y y′ ′ , the rate of change in data by ( ) /( )e f e+ + f′ ′ , then 
the rate of change in solution may be as large as C times the rate of change in data. 
 
The number C is called the condition number. It depends only on the coefficients a, b, c 
and d of the common left-hand side of Eq.(3.1) The reader can verify that 1C ≥  
(always). The condition number of the system (2.1) turns out to be C=2,661,396, 
meaning that as much as 2.66 million times the change in data may be transmitted into 
the solution. The reader can verify the theorem by applying Theorem 6.1 where ⋅ is 

the 1⋅ -norm 
 
4. Norms and Vector spaces 
 
Norms are measures for measuring the size of vectors or matrices. Norms are defined on 
a vector space. The concept of norm and vector space is a standard conceptual 
framework on which linear algebra and analysis stand. The main object of study is 
linear transformations, of which matrices are typical examples, from one vector space to 
another. The reader is referred to any standard text in linear algebra for details. 
 
A norm is a real-valued function on a vector space. The norm is defined on a vector 
space (call it X). The norm of x  is denoted by x . An infinite number of norms may be 
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defined in the same vector space X. Any norm of the vector space X is to satisfy the 
following properties, where x,y  are vectors and a any scalar: 
 

(a) 0; 0 if and only if 

(b)

(c) Triangle Inequality :

a a

⎧ ≥ = =
⎪

=⎨
⎪ ≤ +⎩

x x x

x x

x + y x y

0

  (4.1)  

Example 4.1 2= =X  the vector space of all column vectors
x⎡ ⎤
⎢ ⎥
⎣ ⎦y

 ( ,x y  are real 

numbers) 
 
 1-norm:   1 x= +x y   (4.2) 

2-norm :   2 2
2 x= +x y   (4.3) 

∞ -norm:   { }max ,x∞ =x y   (4.4) 
 
The reader can verify the properties (a), (b), (c) listed above for any one of these norms. 
Proving this for 2-norm requires the use of Cauchy-Schwarz inequality 
 

2 2 2 2ax b a b x+ ≤ + +y y .  (4.5) 
 

For example, let 
3

4
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
x . Then 

1 3 4 7= + − =x   
2 2

2 3 ( 4) 5= + − =x   

{ }max 3, 4 4∞ = − =x   
 
The reader can generalize the concept of 1-, 2- and ∞ -norms to n , the vector space of 
all n -component real column vectors. 
 
Example 4.2 Matrix Norm 
Let A be an ×n n  real matrix. Take nay norm ⋅  defined on n  (see Example 4.1). 
The definition 

 
 

1
max

=
=

x
A Ax   (4.6) 

gives a norm on the vector space ×n n  of all ×n n  real matrices, where the right-hand 
side denotes the maximum value of Ax  when x  varies over all vectors x  such that 

1=x  
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The norm defined in this way is called the operator norm corresponding to the given 
vector norm. The operator norm does satisfy the axiom for norms. For any A and B in 

×n n  and any scalar a, 
 

 

(a) 0; 0  if and only if 

(b)

(c)

a a

⎧ ≥ = =
⎪

=⎨
⎪ ≤ +⎩

A A A 0

A A

A + B A B

  (4.7) 

 
In other words, the operator norm behaves like a norm and hence is a norm. 
 
A very important inequality follows from the definition in Eq.(4.6): 
 
   for all in ≤Ax A x x n   (4.8) 
 
Replacing A  by the product AB  we have 
 

≤ ≤ABx A Bx A B x   
 
which implies  
 

≤AB A B   (4.9) 
 
In other words, the norm of the product does not exceed the product of the norms. 
 
Example 4.3 Given ija⎡ ⎤= ⎣ ⎦A ,  

 

1
1 11 1,..., 1

max max ijj i
a

= = =
≡ = ∑

x
A Ax

n

n
  

 
This norm is called the “maximum column sum”. 
 

1 1,..., 1
max max iji j

a
∞

∞ ∞= = =
≡ = ∑

x
A Ax

n

n
  

This norm is called the “maximum row sum norm”. 
 

2
2 21

max the maximum eigenvalue of ' ,
=

≡ =
x

A Ax A A   

where 'A  denotes the transpose of A . This norm is called the “spectral norm”. 

Example 4.4 
1 2
3 4

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A  

{ }1 max 1 3, 2 4 6= + − + =A   
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{ }max 1 2 ,3 4 7∞ = + − + =A   

1 3 1 2 10 10
'

2 4 3 4 10 20
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
A A  

 
The eigenvalues of 'A A  are given by the roots of characteristic equation 
 

210 10
(10 )(20 ) 100 30

10 20
−

− = = − − = − +
−

λ
λ λ λ λ λ

λ
A A I′  , 

or 
 

15 5 5= ±λ  . 
 
Hence 

2 15 5 5 5.116...= + =A   
 
Example 4.5 Induced Norm. 
Consider the vector space n  of all n -component real column vectors and let ⋅  be a 
norm defined on it. Take any invertible ×n n  matrix A . Invertible matrices are those 
which have an inverse. Then, the norm defined by 
 

=Ax Ax  

gives another norm on Rn , since it satisfies the axiom (4.1) for norms as can be 
verified from the definition, where invertibility of A  is needed to have the equivalence 
of =x 0  and Ax = 0 . 
 
- 
- 
- 
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