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Summary  
 
The interaction between logic and computer science has been extensive and continuous. 
Logic has found numerous uses in several different areas of computer science; 
furthermore, new areas in the interface between logic and computer science have 
emerged and have been thoroughly investigated in their own right. 
    
In this chapter, we present selected highlights of the interaction between logic and 
computer science by focusing on just a few areas. The aim is to explore each of these 
areas in some depth, at the expense of breadth of coverage.  
 
The first part of the chapter contains an overview of the fundamentals of computational 
complexity and an exposition of the main connections between logic and computational 
complexity. The second part focuses on finite model theory, which is the study of first-
order logic and richer logics on classes of finite structures; topics covered include the 
analysis of the expressive power of logics using combinatorial games, and the 
connections between asymptotic probabilities and logic on finite structures. The third 
and final part of the chapter contains some of the interactions between logic and 
databases with emphasis on the use of first-order logic as a database query language and 
as a formalism for specifying constraints in databases and reasoning about them.  
 
1. Introduction  
 
Over the years an extensive interaction between logic and computer science has taken 
place. Concepts and methods of logic have permeated computer science to the point that 
logic has been called “the calculus of computer science”. Indeed, logic has found uses 
and applications to a broad spectrum of areas in computer science, including computer 
architecture, programming languages, artificial intelligence, computational complexity, 
database systems, distributed systems, software engineering, and computer-aided 
verification of hardware design. Furthermore, the interaction between logic and 
computer science has given rise to new areas in the interface between the two 
disciplines, such as finite model theory and proof complexity. Overall, logic provides 
computer science with a unifying foundational framework, a variety of formalisms for 
expressing and analyzing algorithmic problems, and a rich set of concepts and tools for 
specifying aspects of computation and reasoning about them.  
 
The goal of this chapter is to present some highlights of the interaction between logic 
and computer science by focusing on just a few selected areas. Specifically, we will 
discuss the connections between logic and computational complexity, give a bird’s-eye 
view of finite model theory, and describe some of the interactions between logic and 
databases. There are two characteristics of the interaction between logic and computer 
science that will be evident in what follows. First, although infinite structures have a 
place in logic and computer science, the focus is mainly on finite structures or, more 
precisely, on classes of finite structures. Second, in addition to propositional logic and 
first-order logic, numerous other logics play an important role in computer science, 
including second-order logic and its fragments, various logics with fixed-point 
operators, finite-variable infinitary logics, and modal and temporal logics.  
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2. Complexity Classes and the 
?

P = NP problem  
 
As described in Computability and Complexity, computability theory is concerned with 
the study of the boundary between solvability and unsolvability. Thus, one of the main 
aims of computability theory is to determine whether a given algorithmic problem of 
interest is solvable or unsolvable.  
 
Computational complexity can be viewed as the evolution of computability theory 
where the focus is on solvable problems and the aim is classify these problems ac-
cording to the resources required to solve them. For this reason, computational 
complexity has been aptly described by J. Hartmanis in his 1993 Turing Award Lecture 
as “the quantitative study of solvability”. Indeed, the main goal of computational 
complexity is to characterize the inherent difficulty of solvable decision problems by 
placing them into classes according to the time resources or space resources required to 
solve them in some model of computation, which usually is either the (deterministic) 
Turing machine or the non-deterministic Turing machine.  
 
The following major complexity classes will be of interest to us, where in the table 
below TM stands for (deterministic) Turing machine and NTM stands for non-
deterministic Turing machine.  

 

 
 

Figure 1. Complexity Classes 
 
Time Complexity Classes. The class P consists of all decision problems solvable by a 
Turing machine in time bounded by some polynomial in the size of the input (see also 
Computability and Complexity). In the early 1960s, A. Cobham and J. Edmonds brought 
P to center stage by arguing that polynomial-time computability captures the informal 
concept of a tractable decision problem, that is, a problem for which a “good” algorithm 
exists. The intuition is that polynomial-time algorithms are “good”, while on the 
contrary exponential-time algorithm are not, because the running time of an exponential 
algorithm dominates the running time of every polynomial-time algorithm, as the size of 
the input increases,  
 
The class NP consists of all decision problems solvable by a non-deterministic Turing 
machine in time bounded by some polynomial in the size of the input. More precisely 
and as described in Computability and Complexity, the computation of a non-
deterministic Turing machine M on an input x can be visualized as a computation tree 
whose paths represent the possible sequences of choices made by M while processing x. 
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The input x is accepted by M if at least one path in the computation tree leads to an 
accepting state; furthermore, the time required by M to accept x is the minimum of the 
lengths of all accepting paths for x. Thus, a decision problem is in NP if there is a non-
deterministic Turing machine M and a polynomial p(n) such that an input x is a “yes” 
instance of the decision problem if and only if the time required by M to accept x is at 
most p(|x|), where |x| is the size of x.  
 
An equivalent description of NP is that it consists of the class of all decision problems 
for which all “yes” instances have succinct certificates, that is, a proof that an input is a 
“yes” instance of the decision problem under consideration can be guessed and verified 
in time polynomial in the size of the input. For example, consider 3-Colorability, which 
asks: given a graph G =(V, E), can we assign one of three colors to each node so that no 
two nodes joined by an edge have the same color? If a graph is 3-colorable, then we can 
guess an assignment of colors to the nodes (this takes time linear in the size of G) and 
verify in quadratic time that it is indeed a 3-coloring of G. If effect, the paths of the 
computation tree of a polynomial-time non-deterministic Turing machine for 3-
COLORABILITY are all possible such assignments of colors.  
 
It is clear that P NP⊆ . Thus, it is natural to ask whether P is properly contained in NP 
or, equivalently, whether P is different from NP.  
 
Problem: Is P = NP?  
 

The 
?

P = NP question is regarded as the central mathematical problem in theoretical 
computer science. It is a fundamental question about the comparative computational 
power of two different models of computation utilizing the same time resources. 

Another reason for the prominent status of 
?

P = NP is that NP contains numerous 
important decision problems for which only exponential-time algorithms are known. 
Usually, these problems can be solved in exponential-time via exhaustive search 
through a space of candidate solutions each of which is of size polynomial in the size of 
the input. Thus, these problems belong to NP, since an actual solution is a succinct 
certificate that can be guessed and verified in polynomial time; 3-COLORABILITY is a 
case in point.  
 
A possible approach to separating P from NP is to show that there is a structural 
property possessed by one of the two, but not by the other. Since P is a deterministic 
complexity class, it is closed under complements, which means that if a problem Q is P , 
then so is the complement Q  of Q. In contrast, NP is not known to be closed under 
complements. In particular, it is not known whether NON-3-COLORABILITY is in NP.  
 
Problem: Is NP closed under complements? Equivalently, is NP = coNP?  
 
Space Complexity Classes. Let us now consider the space complexity classes NL and 
PSPACE. When defining space complexity classes, it is understood that the Turing 
machines considered (whether deterministic or non-deterministic) have a read-only tape 
that holds the input and one or more separate work tapes; the space-bound is imposed 
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only on the number of different cells in the work tape(s) used during the computation. 
Thus, NL is the class of all decision problems solvable by a nondeterministic Turing 
machine using work-space bounded by the logarithm of the size of the input, while 
PSPACE is the class of all decision problems solvable by a (deterministic) Turing 
machine using work-space bounded by some polynomial of the size of the input. We 
could also consider the class NPSPACE of all decision problems solvable by a non-
deterministic Turing machine in polynomial space. As shown by Savitch in 1970, 
however, this class turns out to be the same as PSPACE.  
 
Theorem 2.1. [Savitch] PSPACE = NPSPACE.  
 
This result is actually a special case of a more general tradeoff between deterministic 
and non-deterministic complexity classes. Specifically, Savitch showed that if 

( ) logf n n≥  is a “well-behaved” function, then  
 

2NSPACE( ( )) SPACE( ( ))f n f n⊆ , 
 
where NSPACE(f (n)) is the class of decision problems solvable by a non-deterministic 
Turing machine in space f (n) and SPACE(f 

2
(n)) is the class of decision problems 

solvable by a (deterministic) Turing machine in space f 
2 

(n). Thus, the space trade-off 
between deterministic and non-deterministic Turing machines is much better understood 
than the time trade-off.  
 
Relationships Between Time and Space Complexity Classes. Although a multitude of 
complexity classes can be defined by considering different time and space bounds, the 
complexity classes NL,P, NP, and PSPACE are arguably the most prominent ones in 
computational complexity as many natural decision problems encountered in various 
areas of computer science tend to belong to one of them. Using the definitions, 
Savitch’s Theorem 2.1, and simulations between deterministic and nondeterministic 
Turing machines, it is not too difficult to derive the following relationships between 
these complexity classes.  
 
Theorem 2.2. The following containments hold:  
 
NL P NP PSPACE⊆ ⊆ ⊆ . 
 
It is conjectured and widely believed that each of the above immediate containments is a 
proper one, but proving this remains the key open problem in computational complexity 
to date. A separation, however, has been established between the two extremes.  
 
Theorem 2.3. NL is properly contained in PSPACE, that is, NL PSPACE≠ .  
 
This separation can be derived by combining two results. The first is that 

2NL SPACE(log ( ))n⊆ , which is a consequence of the aforementioned general space 
trade-off results by Savitch. The second is a Hierarchy Theorem by Hartmanis and 
Stearns, which informally asserts that if there is a sufficiently large gap between the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis 

©Encyclopedia of Life Support Systems (EOLSS) 

space bounds used to define two deterministic complexity classes, then one is properly 
contained in the other. This result is proved using a delayed diagonalization technique.  
 
Note that, since NL PSPACE≠ , at least one of the three immediate containments in 
Theorem 2.2 must be a proper one, which means that at least one of the separations 
NL P,P NP≠ ≠ , and NP PSPACE≠  holds. Yet, to this date it is not known which of 
these actually hold, even though, as indicated above, it is believed that all three hold.  
 
It had been conjectured that NL is not closed under complements, which would have 
implied that NL P≠ . This conjecture remained open for quite a long time, until it was 
eventually refuted by N. Immerman and, independently, R. Szelepcsényi in 1986.  
 
Theorem 2.4. [Immerman, Szelepcsényi] NL is closed under complements.  
 
Although the exact relationship between the major complexity classes is far from being 
understood, there has been progress in understanding the internal structure of these 
classes, as we will discuss next. Moreover, concepts and methods of computability 
theory have been a source of inspiration for this work.  
 
Complete Problems. The complexity classes P, NP, NL, and PSPACE contains problem 
that are complete for the class, that is, problems that embody the intrinsic computational 
difficulty of the class at hand. More precisely, let C be a complexity class and Q a 
decision problem. We say that Q is C-complete if Q is in C and Q is C-hard , which 
means that for every Q C′∈ , there is a “suitable” many-one reduction f of Q′

 
to Q, so 

that for every input x  
 

( )x Q f x Q′∈ ⇔ ∈ . 
 
Intuitively, by “suitable” reduction, we mean that f can be computed using fewer 
resources than the ones in the definition of the class C. More precisely, if C is the class 
NL or the class P, then “suitable” means that f is computable by a (deterministic) Turing 
machine in logarithmic space. For NP , PSPACE and other larger classes, “suitable” 
means that f is computable by a (deterministic) Turing machine in polynomial time.  
 
The significance of complete problems is twofold. To begin with, complete problems 
for a class C hold the secret of whether or not C collapses to a complexity class C′  
contained in C, provided that C′  is closed under the “suitable” reductions. In particular, 
for every NP-complete problem Q, the following two statements are equivalent:  
 
(1) P = NP.  
(2) PQ∈ .  
 
Thus, NP-complete problems are the prime candidates for establishing the separation of 
P from NP. Furthermore, until this separation is established, showing that a decision 
problem Q is NP-complete is regarded as strong evidence that Q is not in Pand, thus, Q 
is computationally intractable.  
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Note that if P = NP, then every problem in NP is easily seen to be NP-complete. If, 
however, P = NP (which is believed to be the case), then the structure of NP is quite 
complex as it contains problems of intermediate complexity between NP-complete and 
P. The following result, was obtained by R. Ladner in 1975 using a delicate 
diagonalization method.  
 
Theorem 2.5. [Ladner’s Theorem] If P NP≠ , then there is a decision problem Q 
having the following properties:  
 
(1) Q NP P∈ − .  
(2) Q is not NP-complete. 
 
Problems in NP that are neither NP-complete nor in P can be viewed as analogous to r.e. 
sets that are neither recursive nor r.e.-complete (see the discussion about Post’s Problem 
in Computability and Complexity).  
 
Although the existence of such r.e. sets was shown by Friedberg and Muchnik without 
any additional hypotheses, the existence of NP-problems of intermediate complexity 
between NP-complete and P has so far been shown only under the hypothesis that 
P NP≠ .  
 
Clearly, proving outright that such problems exist would also prove that P NP≠ .  
 

 
 

Figure 2. The Fine Structure of NP 
 
It should be noted that the existence of complete problems for a complexity class cannot 
be taken for granted. As a matter of fact, there are complexity classes that provably 
contain no complete problems. 
 
 Nonetheless, all four classes NL, P, NP, and PSPACE contain numerous complete 
problems that arise naturally in several different areas of mathematics and computer 
science. 
 
 In particular, as we will see next, propositional logic provides some of the prototypical 
complete problems for each of these classes.  
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