
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

LOGIC AND COMPUTER SCIENCE

Phokion G. Kolaitis
Computer Science Department, University of California, Santa Cruz, CA 95064, USA

Keywords: algorithm, Armstrong’s axioms, complete problem, complexity class,
computable function, computational complexity, conjunctive query, constraints, data
complexity, database query language, database system, database theory, database,
Datalog, decidable problem, decision problem, definable query, descriptive complexity,
deterministic Turing machine, domain-independent formula, Ehren-feucht-Fraїssé
game, existential second-order logic, expression complexity, finite model theory, finite-
variable logics, first-order logic, functional dependency, inductive definition, infinitary
logic, intractable problem, least fixed-point logic, logarithmic space, many-one
reduction, mathematical logic, model checking problem, model theory, NL, non-
deterministic logarithmic space, non-deterministic Turing machine, non-deterministic
polynomial time, NP, NP-complete, partial fixed-point logic, pebble games, polynomial
hierarchy, polynomial space, polynomial time, preservation theorem, preservation under
extensions, propositional logic, PSPACE, query, recursive function, recursively
enumerable, relational algebra, relational databases, satisfaction relation, satisfiable
formula, satisfiability problem, second-order logic, solvable problem, SQL, structured
query language, superkey, tautology, tractable problem, Turing machine, undecidable
problem, unsolvable problem, zero-one law.

Contents

1. Introduction

2. Complexity Classes and the
?

P = NP problem
3. Propositional Logic and Complexity Classes
4. The Complexity of First-Order Logic and Richer Logics
4.1. The Complexity of First-Order Logic
4.2. The Complexity of Existential Second-Order Logic
4.3. Fagin’s Theorem and Descriptive Complexity
4.4. Least Fixed-Point Logic and Polynomial-Time
4.5. Partial Fixed-Point Logic and Polynomial Space
5. Finite Model Theory
5.1. Classical Model Theory in the Finite
5.2. Ehrenfeucht-Fraїssé Games and First-Order Logic
5.3. Pebble Games and Fixed-Point Logics
5.4. 0-1 Laws in Finite Model Theory
6. Logic and Databases
6.1. Database Query Languages
6.2. Constraints in Databases
Glossary
Biographical Sketch

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

Summary

The interaction between logic and computer science has been extensive and continuous.
Logic has found numerous uses in several different areas of computer science;
furthermore, new areas in the interface between logic and computer science have
emerged and have been thoroughly investigated in their own right.

In this chapter, we present selected highlights of the interaction between logic and
computer science by focusing on just a few areas. The aim is to explore each of these
areas in some depth, at the expense of breadth of coverage.

The first part of the chapter contains an overview of the fundamentals of computational
complexity and an exposition of the main connections between logic and computational
complexity. The second part focuses on finite model theory, which is the study of first-
order logic and richer logics on classes of finite structures; topics covered include the
analysis of the expressive power of logics using combinatorial games, and the
connections between asymptotic probabilities and logic on finite structures. The third
and final part of the chapter contains some of the interactions between logic and
databases with emphasis on the use of first-order logic as a database query language and
as a formalism for specifying constraints in databases and reasoning about them.

1. Introduction

Over the years an extensive interaction between logic and computer science has taken
place. Concepts and methods of logic have permeated computer science to the point that
logic has been called “the calculus of computer science”. Indeed, logic has found uses
and applications to a broad spectrum of areas in computer science, including computer
architecture, programming languages, artificial intelligence, computational complexity,
database systems, distributed systems, software engineering, and computer-aided
verification of hardware design. Furthermore, the interaction between logic and
computer science has given rise to new areas in the interface between the two
disciplines, such as finite model theory and proof complexity. Overall, logic provides
computer science with a unifying foundational framework, a variety of formalisms for
expressing and analyzing algorithmic problems, and a rich set of concepts and tools for
specifying aspects of computation and reasoning about them.

The goal of this chapter is to present some highlights of the interaction between logic
and computer science by focusing on just a few selected areas. Specifically, we will
discuss the connections between logic and computational complexity, give a bird’s-eye
view of finite model theory, and describe some of the interactions between logic and
databases. There are two characteristics of the interaction between logic and computer
science that will be evident in what follows. First, although infinite structures have a
place in logic and computer science, the focus is mainly on finite structures or, more
precisely, on classes of finite structures. Second, in addition to propositional logic and
first-order logic, numerous other logics play an important role in computer science,
including second-order logic and its fragments, various logics with fixed-point
operators, finite-variable infinitary logics, and modal and temporal logics.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

2. Complexity Classes and the
?

P = NP problem

As described in Computability and Complexity, computability theory is concerned with
the study of the boundary between solvability and unsolvability. Thus, one of the main
aims of computability theory is to determine whether a given algorithmic problem of
interest is solvable or unsolvable.

Computational complexity can be viewed as the evolution of computability theory
where the focus is on solvable problems and the aim is classify these problems ac-
cording to the resources required to solve them. For this reason, computational
complexity has been aptly described by J. Hartmanis in his 1993 Turing Award Lecture
as “the quantitative study of solvability”. Indeed, the main goal of computational
complexity is to characterize the inherent difficulty of solvable decision problems by
placing them into classes according to the time resources or space resources required to
solve them in some model of computation, which usually is either the (deterministic)
Turing machine or the non-deterministic Turing machine.

The following major complexity classes will be of interest to us, where in the table
below TM stands for (deterministic) Turing machine and NTM stands for non-
deterministic Turing machine.

Figure 1. Complexity Classes

Time Complexity Classes. The class P consists of all decision problems solvable by a
Turing machine in time bounded by some polynomial in the size of the input (see also
Computability and Complexity). In the early 1960s, A. Cobham and J. Edmonds brought
P to center stage by arguing that polynomial-time computability captures the informal
concept of a tractable decision problem, that is, a problem for which a “good” algorithm
exists. The intuition is that polynomial-time algorithms are “good”, while on the
contrary exponential-time algorithm are not, because the running time of an exponential
algorithm dominates the running time of every polynomial-time algorithm, as the size of
the input increases,

The class NP consists of all decision problems solvable by a non-deterministic Turing
machine in time bounded by some polynomial in the size of the input. More precisely
and as described in Computability and Complexity, the computation of a non-
deterministic Turing machine M on an input x can be visualized as a computation tree
whose paths represent the possible sequences of choices made by M while processing x.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

The input x is accepted by M if at least one path in the computation tree leads to an
accepting state; furthermore, the time required by M to accept x is the minimum of the
lengths of all accepting paths for x. Thus, a decision problem is in NP if there is a non-
deterministic Turing machine M and a polynomial p(n) such that an input x is a “yes”
instance of the decision problem if and only if the time required by M to accept x is at
most p(|x|), where |x| is the size of x.

An equivalent description of NP is that it consists of the class of all decision problems
for which all “yes” instances have succinct certificates, that is, a proof that an input is a
“yes” instance of the decision problem under consideration can be guessed and verified
in time polynomial in the size of the input. For example, consider 3-Colorability, which
asks: given a graph G =(V, E), can we assign one of three colors to each node so that no
two nodes joined by an edge have the same color? If a graph is 3-colorable, then we can
guess an assignment of colors to the nodes (this takes time linear in the size of G) and
verify in quadratic time that it is indeed a 3-coloring of G. If effect, the paths of the
computation tree of a polynomial-time non-deterministic Turing machine for 3-
COLORABILITY are all possible such assignments of colors.

It is clear that P NP⊆ . Thus, it is natural to ask whether P is properly contained in NP
or, equivalently, whether P is different from NP.

Problem: Is P = NP?

The
?

P = NP question is regarded as the central mathematical problem in theoretical
computer science. It is a fundamental question about the comparative computational
power of two different models of computation utilizing the same time resources.

Another reason for the prominent status of
?

P = NP is that NP contains numerous
important decision problems for which only exponential-time algorithms are known.
Usually, these problems can be solved in exponential-time via exhaustive search
through a space of candidate solutions each of which is of size polynomial in the size of
the input. Thus, these problems belong to NP, since an actual solution is a succinct
certificate that can be guessed and verified in polynomial time; 3-COLORABILITY is a
case in point.

A possible approach to separating P from NP is to show that there is a structural
property possessed by one of the two, but not by the other. Since P is a deterministic
complexity class, it is closed under complements, which means that if a problem Q is P ,
then so is the complement Q of Q. In contrast, NP is not known to be closed under
complements. In particular, it is not known whether NON-3-COLORABILITY is in NP.

Problem: Is NP closed under complements? Equivalently, is NP = coNP?

Space Complexity Classes. Let us now consider the space complexity classes NL and
PSPACE. When defining space complexity classes, it is understood that the Turing
machines considered (whether deterministic or non-deterministic) have a read-only tape
that holds the input and one or more separate work tapes; the space-bound is imposed

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

only on the number of different cells in the work tape(s) used during the computation.
Thus, NL is the class of all decision problems solvable by a nondeterministic Turing
machine using work-space bounded by the logarithm of the size of the input, while
PSPACE is the class of all decision problems solvable by a (deterministic) Turing
machine using work-space bounded by some polynomial of the size of the input. We
could also consider the class NPSPACE of all decision problems solvable by a non-
deterministic Turing machine in polynomial space. As shown by Savitch in 1970,
however, this class turns out to be the same as PSPACE.

Theorem 2.1. [Savitch] PSPACE = NPSPACE.

This result is actually a special case of a more general tradeoff between deterministic
and non-deterministic complexity classes. Specifically, Savitch showed that if

() logf n n≥ is a “well-behaved” function, then

2NSPACE(()) SPACE(())f n f n⊆ ,

where NSPACE(f (n)) is the class of decision problems solvable by a non-deterministic
Turing machine in space f (n) and SPACE(f

2
(n)) is the class of decision problems

solvable by a (deterministic) Turing machine in space f
2

(n). Thus, the space trade-off
between deterministic and non-deterministic Turing machines is much better understood
than the time trade-off.

Relationships Between Time and Space Complexity Classes. Although a multitude of
complexity classes can be defined by considering different time and space bounds, the
complexity classes NL,P, NP, and PSPACE are arguably the most prominent ones in
computational complexity as many natural decision problems encountered in various
areas of computer science tend to belong to one of them. Using the definitions,
Savitch’s Theorem 2.1, and simulations between deterministic and nondeterministic
Turing machines, it is not too difficult to derive the following relationships between
these complexity classes.

Theorem 2.2. The following containments hold:

NL P NP PSPACE⊆ ⊆ ⊆ .

It is conjectured and widely believed that each of the above immediate containments is a
proper one, but proving this remains the key open problem in computational complexity
to date. A separation, however, has been established between the two extremes.

Theorem 2.3. NL is properly contained in PSPACE, that is, NL PSPACE≠ .

This separation can be derived by combining two results. The first is that

2NL SPACE(log ())n⊆ , which is a consequence of the aforementioned general space
trade-off results by Savitch. The second is a Hierarchy Theorem by Hartmanis and
Stearns, which informally asserts that if there is a sufficiently large gap between the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

space bounds used to define two deterministic complexity classes, then one is properly
contained in the other. This result is proved using a delayed diagonalization technique.

Note that, since NL PSPACE≠ , at least one of the three immediate containments in
Theorem 2.2 must be a proper one, which means that at least one of the separations
NL P,P NP≠ ≠ , and NP PSPACE≠ holds. Yet, to this date it is not known which of
these actually hold, even though, as indicated above, it is believed that all three hold.

It had been conjectured that NL is not closed under complements, which would have
implied that NL P≠ . This conjecture remained open for quite a long time, until it was
eventually refuted by N. Immerman and, independently, R. Szelepcsényi in 1986.

Theorem 2.4. [Immerman, Szelepcsényi] NL is closed under complements.

Although the exact relationship between the major complexity classes is far from being
understood, there has been progress in understanding the internal structure of these
classes, as we will discuss next. Moreover, concepts and methods of computability
theory have been a source of inspiration for this work.

Complete Problems. The complexity classes P, NP, NL, and PSPACE contains problem
that are complete for the class, that is, problems that embody the intrinsic computational
difficulty of the class at hand. More precisely, let C be a complexity class and Q a
decision problem. We say that Q is C-complete if Q is in C and Q is C-hard , which
means that for every Q C′∈ , there is a “suitable” many-one reduction f of Q′

to Q, so

that for every input x

()x Q f x Q′∈ ⇔ ∈ .

Intuitively, by “suitable” reduction, we mean that f can be computed using fewer
resources than the ones in the definition of the class C. More precisely, if C is the class
NL or the class P, then “suitable” means that f is computable by a (deterministic) Turing
machine in logarithmic space. For NP , PSPACE and other larger classes, “suitable”
means that f is computable by a (deterministic) Turing machine in polynomial time.

The significance of complete problems is twofold. To begin with, complete problems
for a class C hold the secret of whether or not C collapses to a complexity class C′
contained in C, provided that C′ is closed under the “suitable” reductions. In particular,
for every NP-complete problem Q, the following two statements are equivalent:

(1) P = NP.
(2) PQ∈ .

Thus, NP-complete problems are the prime candidates for establishing the separation of
P from NP. Furthermore, until this separation is established, showing that a decision
problem Q is NP-complete is regarded as strong evidence that Q is not in Pand, thus, Q
is computationally intractable.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

Note that if P = NP, then every problem in NP is easily seen to be NP-complete. If,
however, P = NP (which is believed to be the case), then the structure of NP is quite
complex as it contains problems of intermediate complexity between NP-complete and
P. The following result, was obtained by R. Ladner in 1975 using a delicate
diagonalization method.

Theorem 2.5. [Ladner’s Theorem] If P NP≠ , then there is a decision problem Q
having the following properties:

(1) Q NP P∈ − .
(2) Q is not NP-complete.

Problems in NP that are neither NP-complete nor in P can be viewed as analogous to r.e.
sets that are neither recursive nor r.e.-complete (see the discussion about Post’s Problem
in Computability and Complexity).

Although the existence of such r.e. sets was shown by Friedberg and Muchnik without
any additional hypotheses, the existence of NP-problems of intermediate complexity
between NP-complete and P has so far been shown only under the hypothesis that
P NP≠ .

Clearly, proving outright that such problems exist would also prove that P NP≠ .

Figure 2. The Fine Structure of NP

It should be noted that the existence of complete problems for a complexity class cannot
be taken for granted. As a matter of fact, there are complexity classes that provably
contain no complete problems.

 Nonetheless, all four classes NL, P, NP, and PSPACE contain numerous complete
problems that arise naturally in several different areas of mathematics and computer
science.

 In particular, as we will see next, propositional logic provides some of the prototypical
complete problems for each of these classes.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Logic and Computer Science - Phokion G. Kolaitis

©Encyclopedia of Life Support Systems (EOLSS)

-
-
-

TO ACCESS ALL THE 49 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Biographical Sketch

Phokion G. Kolaitis is a Professor of Computer Science at the University of California, Santa Cruz.
Trained as a logician, he has worked primarily in Logic in Computer Science, Finite Model Theory,
Complexity and Database Theory. He has received a Guggenheim Fellowship and has had a continuing
association with the IBM Almaden Research Center, where he has been serving since 2004 as Manager of
the Computer Science Principles and Methodologies Group.

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-01-05-05

