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Summary 
 
Differential equations, as a part of differential calculus, were invented in the 17th 
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century by Leibniz and Newton; Newton illustrated the theory in a completely 
outstanding manner in his theory of gravitation and of the movement of planets. The 
theory of differential equations gives a means to reconstruct global objects, such as 
geometrical figures or movements, from their infinitesimal properties, i.e. their behavior 
in infinitely small regions of space or space-time (the position of the tangents, or 
relations between position, speed and acceleration). It is all-important in physics where 
one expects that phenomena propagate step by step and there is no « long distance » 
action (quantum theory obliges to somewhat revise this point of view).  
 
This chapter deals with linear differential equations, i.e. of the form df/dt-A(f)=g, where 
the unknown function f and g are vector functions, and A depends linearly on f 
(A(f+g)=A(f)+A(g) ). Linear equations form an important category because they appear 
systematically in error or perturbation computations (Section 2). They also appear in 
evolution processes which are axiomatically linear, i.e. where linearity enters in the 
definition, in particular in quantum theory. So they are a very important aspect of all 
evolution processes. 
 
We have attempted to describe some of the most typical and important examples 
(Section 3), and the most performant methods that have been invented to deal with them 
(Section 4). The most important examples go back at least to Euler ; they describe the 
equilibrium state for an electric potential (Laplace equation), the propagation of light 
waves, or the diffusion of heat. We have added the more recent example of Hans Lewy, 
which belongs to complex geometry; the Hans Lewy equation cannot be solved, even 
locally, so it is a very bad model for physics; but it is very useful in complex analysis, 
and in some sense a generic model for « equations with non constant coefficients ». 
Among the most important tool used for the theory are the Fourier transformation and 
distribution theory. Fourier transformation describes the decomposition of a function or 
a movement as a superposition of plane waves (this is precisely what an oscilloscope 
does). The theory of distributions was developed by Sobolev and Schwartz ; its 
usefulness comes from the fact that for many differential problems concerning function 
of several variables, it is unavoidable to introduce functions which are less regular than 
differentiable function ; the theory of distributions gives a very practical and universal 
manner of dealing with such « irregular » objects ; it is essentially a « linear theory », 
and often more delicate to use in non-linear problems. 
 
1. Introduction 
 
A linear partial differential equation on n  ( n  the number of variables) is an equation 
of the form  
 

( )P x f g∂, = , 
 
where ( ) ( )P P x a x α

α∂ ∂= , = ∑  is a linear differential operator, taking a differentiable 
function f  into the linear combination of its derivatives: 
  

( )a x fα
α ∂∑ . 
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In this notation α  is a multi-index i.e. a sequence of n  integers 1( )n…α α α= , ,  and the 
corresponding derivative is  
 

1 1
1

( )
n n

n

ff …
x … x

α
α

αα
∂∂ α α α

∂ ∂

| |
= | |= + . 

 
One also considers systems of such equations, where f  (and the right hand side g ) are 
vector valued functions and ( )ijP P=  is a matrix of differential operators.  
 
Linear equations appear systematically in error computations, or perturbation 
computations; they also appear in evolution processes which are axiomatically linear, 
i.e. where linearity enters in the definition, e.g. in field theories. So they are a very 
important aspect of all evolution processes.  
 
For linear partial differential equations, a general theory was developed (although as yet 
certainly not complete). In many cases general rules of behavior, or for computing 
solutions exist, much more than for non linear partial differential equations, for which 
important mathematical (like functional analysis) were invented and used, but which 
consists mostly of a smaller number of fundamental systems of equations (like the 
Navier-Stokes equations describing the flow of a fluid) which model important physical 
phenomena and whose analysis also uses physical intuition.  
 
2. Linearity and Continuity 
 
2.1. Continuity 
 
In our world, the state of a physical system is usually defined by a finite or infinite 
collection of real numbers (furnished by measures). These completely describe the state 
of the system if  
 
1) The result of any other reasonable numerical measure one could perform on the 

system are determined by these numbers - i.e. in mathematical language, is a 
function of these, and  

 
2) The future states of the system, i.e. the values of these numbers at future times 

0t t≥ , are completely determined by these numbers at an initial time 0t t= . ( In 
quantum physics things are a little different; one must use complex numbers, and the 
states of a system can no longer be thought of as a set or a manifold, where 
coordinates (measures) are real numbers; see below.) These numbers may satisfy 
some relations; mathematically one thinks of the set of all possible states as a 
manifold (possibly with singularities). For instance if the set of measures contains 
twice the same identical one, the corresponding numbers must of course be the 
same. There are many other possible ways of choosing measures that will have 
correlations, and in fact it will usually be impossible to give a complete description 
by a set of measures with no correlations at all. A simple example is a system whose 
states are points on a sphere, as on the surface of our planet Earth: a state can be 
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determined by 3 measures (height, breadth, depth) x y z, ,  satisfying one quadratic 
relation 2 2 2 1x y z+ + = . It is also determined by two real numbers (angles): the 
latitude and the longitude, but note however that the longitude is not well defined at 
the north and south poles. 

  
Above we mentioned only “reasonable” measures. The reason is that our measures are 
never exact, there is always some error or imprecision (hopefully quite small) - this 
means that we can only make sense of measures that are continuous functions of the 
coordinates (the smaller the error on the coordinates, the smaller the error on the 
measure). Many usual functions are continuous. The elementary function 

( )E x = integral part of x  (largest integral number contained in x , for x  a real number) 
is not continuous, and a computer is not really able to compute it: for instance the 
computer is not usually able to distinguish between the two numbers 1x ε= −  and 

1y ε= +  if ε  is a very small number (e.g. 4310 1ε −= =  over (1 followed by 43 
zeros)), especially if these numbers are the result of an experiment and not given by a 
sure theoretical argument. Unless it is told to do otherwise, the computer will round up 
numbers and find ( ) ( ) 1E x E y= = ; this means a huge relative error of 4310  (by 

comparison recall that the size of the known universe is about 2010 m ).  
 
2.2. Linearity 
 
Measures provide real numbers. Real numbers can be added, and also multiplied 
(dilated). Objects or quantities for which addition and dilations are defined are usually 
called “vectors” and form a vector space; there is also a notion of complex vector spaces 
where dilations by complex numbers are allowed. This is not a complete mathematical 
definition; mathematicians also use, in particular in number theory or group theory, 
additive objects which have not much to do with vectors. 
  
A real function of real numbers 1( )nf x … x, ,  is linear if it takes sums into sums:  
 

1 1 1 1( ) ( ) ( )n n n nf x y … x y f x … x f y … y+ , , + = , , + , ,  

 
(as limiting case f  also takes a dilation to the same dilation (if it is continuous):  
 

1 1( ) ( )n nf x … x f x … xλ λ λ, , = , ,  

 
if λ  is any real number)  
 
Almost equivalently f  is linear if it takes straight lines to straight lines or linear 
movements to linear movements (its “graph is straight”)  
 
Linear functions are simple to compute and to manipulate. The physical quantities we 
measure are not intrinsically linear; in fact the notion of linearity depends on the choice 
of basic coordinates (measures) one makes to describe a system, so it is not really well a 
priori defined for physical systems.  
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However one of the main points of the differential calculus which was developed during 
the 17th-18th centuries is the fact that usual functions or measurable physical 
phenomena are linear when restricted to infinitely small domains, or approximately 
linear when restricted to small domains (the smaller the domain, the better the relative 
linear approximation); in other words, error calculus is almost additive, the error 
produced by the superposition of two fluctuations in an experiment is the sum of the 
errors produced by each fluctuation separately (up to much smaller errors).  
 
Functions which have this property of being approximately linear on small domains are 
called differentiable. The linear function which best approximates a differentiable 
function at a given point is called the tangent linear map, and its slope is the derivative 
at the given point. Most “usual” function given by simple explicit formulas have this 
property, e.g. the sine, exp, log function, and linear algebra appears systematically in 
error calculus concerning these functions.  
 
Note however that Weierstrass showed that there are many continuous functions which 
are nowhere (or almost nowhere) differentiable - e.g. the function  
 

( ) 2 sin 3n ny x x−= ,∑  

 
or the function which describes the shape of a coast: this is continuous, but its 
oscillations in small domains grow sharper and sharper. Many similar functions 
describing some kind of “fractal chaos” are in the same way continuous but not 
differentiable. Although they may be quite lovely to look at, they are difficult to handle 
and compute with quantitative precision - although small, the error on the result 
becomes comparatively very large when the increment of the variable is very small.  
 
2.3. Perturbation Theory and Linearity 
 
Anyway for usual “nice” functions the error calculus is always linear. Since the 
mathematical computation which to a differential equation or partial differential 
equation (and suitable boundary or initial data) assigns its solution looks nice (and at 
least in many important cases is nice), one also expects that if one makes a small 
perturbation of the equation or of the initial data, the resulting error on the solution will 
depend linearly on the errors on the data and one expects that it is governed by a system 
of linear differential equations. This is in fact true and not hard to prove in many good 
cases (although not always - e.g. there are equations without solutions, for which 
perturbation arguments do not make sense since there is nothing to begin with, see 
below). In any case, good or not, it is very easy, just using ordinary differential calculus, 
to write down the linear differential system that the error should satisfy.  
 
For example if an evolution process is described by a differential equation depending on 
a parameter λ :  
 

( )dx t x
dt

λ= Φ , ,                                                                                                          (1) 
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with initial condition at time 0t t=  
  

0( ) ( )x t a λ=                                                                                                              (2) 
 
and 0 ( )x t  is a known solution for 0λ λ= , with initial value 0 0 0( ) ( )x t a λ= , then for 
close values 0λ λ μ= + , the solution 0( )x x t x uλ= , = +  satisfies  
 

0
0 0( ) ( ) small errorx

dxdx du t x t x u
dt dt dt λλ λ μ= + = Φ , , = Φ , , + ∇ Φ ⋅ + ∇ Φ ⋅ +  

 
so the variation u  satisfies, up to an infinitely small error, the linear equation:  
 

x
du u
dt λ μ= ∇ Φ ⋅ + ∇ Φ ⋅                                                                                        (3) 

 
with linear initial condition (with respect to μ ):  
 

0( )u t aλ μ= ∇ ⋅   .                                                                                                     (4) 
 
(the argument above, based on physical considerations, is intuitively convincing but it is 
still not a mathematical proof. In fact for differential equations (one variable), the proof 
is quite straightforward and taught in undergraduate courses. But although analogues for 
many good partial differential equations are true, for general partial differential 
equations the arguments above may be very hard to prove - and sometimes completely 
false.)  
 
2.4. Axiomatically Linear Equations 
 
Some theories are linear by their own nature, or axiomatically, so the differential 
equations that describe the behavior or the evolution of their objects must be linear.  
 
2.4.1. Fields: Maxwell Equations 
 
The description of several important physical phenomena uses fields and field theory. 
Fields are in the first place vector-functions (defined over time or space-time, or some 
piece of this, or some suitable space), but the point is that they are vector valued and 
make up a vector space. So equations for fields should be linear.  
 
A striking example is the system of the Maxwell equations for the electro-magnetic 
field, in “condensed” form, and suitable units of time, length, electric charge, etc. 
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4
0

1 0

1 4

E
B

dBE
c dt

dEB j
c dt c

πρ

π

∇ ⋅ =
∇ ⋅ =

∇× + =

∇× − =

 

 
In these equations, 1 2 3( )E E E E= , , , resp. 1 2 3( )B B B B= , ,  is the electric, resp. 
magnetic field; c  is the speed of light, ρ  is the electric charge density, and j  the 
electric current density, which is related to the charge by j d dtρ∇ = / .  
 
For the vector field E  with components 1 2 3( )E E E, , , the usual notation E∇ ⋅  (or 
div E ) means the scalar (one component) function  
  

31 2

1 2 3

EE E
E

x x x
∂∂ ∂

∂ ∂ ∂
∇ ⋅ = + +  

 
and E∇× = rot E  is the vector field with components  
 

2 3 3 2

3 1 1 3

1 2 2 1

E x E x
E E x E x

E x E x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎧
⎪
⎪
⎨
⎪
⎪⎩

/ − /
∇× = / − /

/ − /

 

 
the same notation is used for 1 2 3( )B B B B= , , .  
 
We should note that these equations have a large group of symmetries: the Lorentz 
group, or the Poincaré group if one includes translations in space time; Lorentz 
transformations leave the equations invariant - not the solutions. These symmetries 
weave space and time together and were the starting point of relativity theory. The 
Maxwell equations are essentially the simplest system of first order linear which remain 
unchanged under transformations of the Poincaré group.  
 
We add the following mathematical complement: let E  be a vector space, and q  a 

nondegenerate quadratic form (in the electromagnetic or relativistic setting 4E = , 
2 2 2 2q t x y z= − − − ). Let Ω  be the space of all differential forms on E  (fields). A 

form of degree k  can be written as ( )
1 1

a x dx …dxi …i i ik k
∑ ; the product of forms is 

defined and is anticommutative i.e. for odd forms ba ab= − . 
 
The exterior derivation is the first order partial differential operator d : Ω → Ω , which 
takes k -forms to the 1k + -forms:  
 

1 1 1 1
( ) ( )

k k k ki …i i i i …i i id a x dx …dx da x dx …dx=∑ ∑  
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with 
i

f
ixdf dx∂

∂= ∑ . The quadratic form d  extends canonically to give a quadratic form 

or a scalar product on forms, and an infinitesimal volume element dv ; the adjoint of d  
is the differential operator d∗  such that  
 

d dω φ ω φ∗| = |∫ ∫ . 

 
One then defines the Dirac operator D d d∗= +  which takes even forms to odd forms, 
and is canonically associated to the quadratic form q . The system of Maxwell’s 
equations is  
 

( )even oddDE A E A= ∈Ω , ∈Ω .  
 
The electromagnetic field itself is described by 2-forms, and in the actual physical 
system certain components vanish - e.g. there are no magnetic charges.  
 
- 
- 
- 
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