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Summary 
 
The art of counting and computation is the origin of mathematics. For example, if we 
want to count a heap of stones, we usually group them into clusters each of which 
contains ten stones: the method is strongly related to the idea of decimal system. 
 
The mathematics on sophisticated art of counting and discrete computation is called 
combinatorics. In short, combinatorics is an art to represent discrete objects 
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systematically and comprehensively. 
 
Combinatorics is in the heart of computer science, since we cannot handle large data 
without the art of efficient discrete computation. Indeed, every data set in modern 
computers is digital (thus, discrete) and represented by using combinational structures. 
 
Therefore, the current IT (Information Technology) society could not exist without 
mathematical works on combinatorics. Moreover, combinatorics is applied to several 
sciences/engineering such as physics, chemistry, life science, graphics, architecture, and 
even social sciences and arts. 
 
We start with the problem of counting poker hands, which needs elementary 
combinatorics on sequences and set systems. Then we survey fundamental 
combinatorial structures such as graphs, hypergraphs, codes, designs, and matroids. In 
addition, we introduce advanced classical topics including Ramsey theory, 
combinatorial geometry and partition theory. 
 
1. Introduction 
 
Combinatorics is the mathematical study of finite sets and discrete structures, such as 
set systems, sequences, graphs, hypergraphs, matroids, points and lines in the plane, 
planes in the space, and polytopes. 
 
The following are typical problems in combinatorics: 
Example 1 (Enumeration of poker hands). Consider the number of different hands in a 
poker game; this is the number of combinations of 5 cards from 52 cards, which is 
2598960. Among them, the number of hands with a pair (two same ranked cards) is 
1281072. Moreover, the number of hands with “no value” in the poker game is 
1302540. How to compute these numbers? 

 

 
 

Figure 1:  Cutting a disk with five lines. 
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Example 2 (Cake cutting problem). If we cut a disk (a cake) with 5 lines (knife-cuts), 
the disk can be cut into 16 pieces (Figure1). Is 16 the maximum number of pieces? 
What is the number if we cut with 10 lines? 
 
Example 3. If we place 9 points in the plane such that no three points are on a line, we 
can always find 5 points forming a convex 5-gon (pentagon) (Figure 2). Why does this 
property hold? However, the configuration of Figure 2 does not contain a point set 
forming a convex (hexagon)6-gon. How many points are necessary so that they always 
contain a convex 6-gon? 
 
Example 4 (Kirkman’s fifteen schoolgirls problem). Fifteen young ladies in a school 
walk out three abreast for seven days in succession: it is required to arrange them daily, 
such that no two shall walk twice abreast. Is it really possible to do such an 
arrangement? 
The area of combinatorics is very wide [3], and it is applied to every field of modern 
mathematics. In particular, probability theory [1] and group theory [8, 9, 10] are 
strongly related to combinatorics. Moreover, combinatorics is a fundamental tool in 
computer science [4, 5], operations research [7], theoretical physics, and mechanical 
engineering.  
 

 
 

Figure 2:  Any 9 points must contain a convex 5-gon 
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1.1. Set Systems and Bit Sequences 
 
Given a set U  of n  elements, ( )UP  is the set of all subsets of .U  For example, if 

{1,2}, ( )U U= P  consists of four sets 0,{1},{2},/  and {1,2},  where 0/  means the empty 
set. ( )UP  is often called the power set of .U  A subset of ( )UP  is called a set system, 
and U  is called its underlying set. { }{1},{1, 2}  is an example of a set system. 
 
A subset S  of {1,2,..., }U n=  corresponds to a bit sequence (i.e. sequences of 0 or 1) of 
length :n  we assign 1 to the i-th entry of the sequence if ,i S∈  otherwise 0 . For 
example, bit sequences 00, 10, 01, and 11 corresponds to 0,{1},{2},/  and {1,2} in 

({1,2}),P  respectively. Thus, we have the first important observation that the number 

( )UP  of different subsets in U  is 2n , since there are 2n  bit sequences of length n . 
In a computer, everything is represented by using bit sequences. For example, alphabets 
are usually represented by using bit sequences of length 8. There are 82 256=  different 
bit sequences of length 8, which corresponds to elements of ( )UP  for {1,2,...,8}U = . 
The set of 26 alphabets can be realized as a subset of ( )UP , and hence forms a set 
system called a bite code of alphabets. Thus, the study of set systems is quite 
fundamental in computer science. 
 
1.2. Level Set and Combination Numbers 
 
We refine ( )UP  and consider the set system ( )k UP  of all subsets of U  containing 
exactly k  elements. This is called the level set of rank k  in ( )UP . Since each hand of 
the poker game consists of five different cards, the set of hands in the poker game is 

5( )UP  for the set U  of 52 different cards (we exclude Jokers). 
 
The cardinality of ( )k UP  is called the combination number of choosing k  elements 
from n  elements, and denoted by ,n kC  which is the most basic and popular tool in 
combinatorics. Therefore, the number of different hands in the poker game is 52 5.C  
 
Let us compute 4 2C  for getting intuition. We can see that there are 6 subsets of size 2 in 
{1,2,3,4}: {1,2},{1,3},{1,4},{2,3},{2,4}, and{3,4} . Thus, 4 2 6.C =  Let us consider it as 
follows: instead of considering subsets, we consider the sequences of length 2 
consisting of two distinct elements of {1,2,3,4}. The first entry can be arbitrary chosen 
(hence we have 4 choices), and the second entry can be chose from 3 other elements 
than the first choice. Hence, there are 4 3 12× =  such sequences. Since we can create 
two sequences from each of combinations of two numbers, for example, 1, 2  and 2,1 
from {1, 2}, we can show that 12 2 6=  is the number of subsets of size 2 in {1,2,3,4}. 
 
This argument holds in general: A sequence of length k  consisting of distinct elements 
of a set S  is called a k-element sequence of .S  A k-element sequence is called a 
permutation if it uses all elements of S  (i.e. k S= ). Analogous to the argument above, 
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we can observe that the number of different k-element sequences of U  is 

1( 1) ( 2) ... ( 1) .n
i n kn n n n k i
= − +

× − × − × × − + =∏  This number can be represented as 

! ( )!n n k−  if we use the factorial function 1! ,n
in i
=

=∏  where 0! is defined to be 1. On 
the other hand, !k  different permutations can be created from a combination of k  
numbers. Hence, we have the following two factorial expressions of the combination 
number: 
 

( )

1
( ) !

! ! !.

n

n k
i n k

n k

C i k

C n n k k

= − +
=

= −

∏
 

By using the first expression, we can compute 
52 5 52 51 50 49 48 5! 2598960.C = × × × × =  
 

Since 0( ) ( ) ,n
kkU U==∑P P  we have 0 2

nn
kk C= =∑ . The following useful formulas 

can be directly derived from the factorial expressions: 
 
n k n n kC C −=      Symmetry of combination numbers 

( ) 1 1n k n kC n k C− −=     Recursive formula 

1 1 1n k n k n kC C C− − −= +    Pascal’s formula (two-dimensional 
recursive formula) 
 
1.3. Inclusion-Exclusion Principle 
 
Given a property a  on a set S  consisting of N  elements, let ( )N a  be the number of 
elements which satisfy .a  The negation of a property a  is denoted by ;¬a  Hence, 

( )N ¬a  is the number of elements which do not satisfy .a  If we have two properties a  
and , ( )b N a b∧  is the number of elements which satisfy both a  and ,b  and ( )N a b∨  
is the number of elements which satisfy either a  or .b  Then, it is not difficult to check 
the following three formulas: 
 
( ) ( )N ¬a N N a= −  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

N a b N a N b N a b

N ¬a ¬b N N a N b N a b

= + −

= − − +

∨ ∧
∧ ∧

 

 
The above three formulas are basic cases of the principle of inclusion-exclusion. More 
generally, given a set I  of properties, ( )N I∧  is the number of elements that satisfy all 
of the properties. The expression ¬I  denotes the set of negated properties of .I  The 
principle of inclusion-exclusion is the following: 
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( )( ) ( ) ( )¬ 1 .
0

JN I N J
J I

= −∑
≠ ⊂

∧ ∧  

 
In the poker game, we consider the set 5( )S U= P  of all possible hands, where U  is the 
set of 52 cards consisting of four suits each consists of 13 cards ranked by numbers A, 
2,…, 10, J, Q, and K. Here, A, J, Q, and K represent 1, 11, 12, and 13, respectively. We 
consider the property pair that “the hand has at least a pair of same ranked cards”. We 
compute ( )N pair  by using the inclusion-exclusion property ( ) ( ),N pair N N ¬pair= −  
where N  is the number of all possible hands and we have already seen that N = 
2598960. A hand satisfying ¬pair  must consist of cards with 5 different numbers. 
Therefore, to compute ( ),N ¬pair  we consider the combinations of 5 numbers from 13, 
and assign arbitrary a suit to each card.  
Hence, 5

13 5( ) 4 1287 1024 1317888,N ¬pair C= × = × =  and 
( ) 1317888N pair N= − = 2598960− 1317888 1281072= . 

 
A poker hand is called straight if it forms a consecutive sequence of numbers (10JQKA 
is permitted but JQKA2 is not) and flush if it consists of cards with a single suit. 
 

( )N ¬pair ¬straight ¬flush∧ ∧  is the number of hands with “no value” in the poker 
game. By using the inclusion-exclusion principle, ( )N ¬pair ¬straight ¬flush∧ ∧ =  

( )N N pair− − ( )N straight −  
( )N flush +
( ) ( ) ( ) ( )N straight flush N pair straight N pair flush N pair straight flush∧ + ∧ + ∧ − ∧ ∧  

 
It can be observed that a hand with a pair can be neither straight nor flush. Hence, 

( ) ( ) ( ) 0.N pair straight N pair flush N pair straight flush∧ = ∧ = ∧ ∧ =  If we ignore 
suits, a straight hand is a sequence starting from A, 2, 3,…, or 10. Hence, there are 10 
such sequences and we can assign an arbitrary suit to each five cards. Thus, 

5( ) 10 4 10240.N straight = × =  We can easily see that 13 5( ) 4 5148,N flush C= × =  and 
( ) 40.N straight flush∧ =  Hence, ( )N pair straight flush∧ ∧ =  

2598960 1281072 10240 5148 40 1302540.− − − + =  
 
1.4. Recursive Formulas and Asymptotic Bounds 
 
In combinatorics, we often want to compute a positive valued function ( )f n  dependent 
on a natural number .n  A typical technique to compute ( )f n  is to find a recursive 
formula and solve it. A recursive formula is a formula expressing ( )f n  in terms of 

( )f k  for 1.k n≤ −  
 
Consider the problem of cutting a disk (a cake) with n  lines (knife cuts) and counting 
the maximum number ( )f n  of connected pieces (the cake cutting problem). We can 

easily check that (1) 2f =  and (2) 4.f =  It seems that ( ) 2nf n =  is a good candidate for 
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the answer, although it is wrong since (3) 7f =  (Figure 3). 
 

Suppose that we have cut the disk with 1n −  lines into (at most) ( 1)f n −  pieces. If we 
give a new cut with a line ,l  the line l  has 1n −  intersecting points with the existing 

1n −  lines, and hence l  is cut into n  segments with the existing lines. If the cake is 
sufficiently large, the line l  cuts n  pieces of the current subdivision, since a segment on 
l  must be created if we cut a piece in the current subdivision with .l  Therefore, we have 
a recursive formula ( ) ( 1) .f n f n n= − +  From this recursive formula, we have 

( )( ) ( 1) 2 1 (0) ( ( 1) 2) 1.f n n n n f n n= + − + − + + + = + +…  An equivalent but more 
beautiful expression is 2 1 0( ) .n n nf n C C C= + +  For example, (5)f  equals 16, and 

(10)f  equals 56. 
 

 
 

Figure 3:  Cutting a disk with three lines. 
 
Functions with more than one variable can have multivariate recursive formulas: for 
example, the combination number ( , ) n kf n k C=  satisfies a recursive formula 

( , ) ( 1, 1) ( 1, )f n k f n k f n k= − − + −  (Pascal’s formula).  
 
Recursive formulas are sometimes difficult to solve, or have ugly solutions. In such a 
case, we consider the asymptotic behavior of a function; that is, how the function grows 
when n  becomes very large. To describe the asymptotic behavior of a function ( ),f n  
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we use another familiar function ( )h n  and estimate ( )f n  by using the Big-O and Big-
Ω  notations ( ( ))O h n  and ( ( )).h nΩ  
 
The expression ( ) ( ( ))f n O h n=  means that there exist constants c  and N  such that 

( ) ( )f n < c h n⋅  holds for every n  satisfying .n > N  The expression ( ) ( ( ))f n h n= Ω  
means that there exist a constant c′ such that for any constant N  there exists an n > N  
such that ( ) ( ).f n < c h n′⋅  We say ( )h n gives an asymptotic upper bound (resp. a lower 
bound) of ( )f n  if ( ) ( ( ))f n O h n=  (resp. ( ) ( ( ))f n h n= Ω . 
 
To obtain an asymptotic upper bound of a function ( ),f n  we can use recursive formulas 
given as inequalities. The following examples are basic asymptotic bounds obtained 
from recursive inequalities: 
 
1. ( ) 2 ( 2) cf n f n n≤ +  for a constant c  gives: ( ) ( )cf n O n=  if 

1, ( ) ( log )c > f n O n n=  if 1,c =  and ( ) ( )f n O n=  if 1.c <  

2. ( ) ( 1) cf n f n n≤ − +  gives: 1( ) ( )cf n O n +=  if 1, ( ) (log )c f n O n≠ − =  if 1.c = −  
3. ( ) ( )f n f cn n≤ +  for a constant 1c <  gives ( ) ( ).f n O n=  

4. ( ) ( 1)f n cf n≤ −  gives ( ) ( ).nf n O c=  
 
In each of the above formulas, if we reverse the inequality, we obtain a lower bound 
instead of the upper bound. 
 
- 
- 
- 
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